
Jupyter Notebook Documentation
Release 5.0.0.dev

https://jupyter.org

September 06, 2016

User Documentation

1 The Jupyter Notebook 1

2 UI Components 7

3 Configuration Overview 11

4 Config file and command line options 13

5 Running a notebook server 23

6 Security in Jupyter notebooks 29

7 Configuring the notebook frontend 33

8 Distributing Jupyter Extensions as Python Packages 35

9 Extending the Notebook 41

10 Contributing to the Jupyter Notebook 55

11 Making a Notebook release 59

12 Developer FAQ 61

13 Examples 63

14 My Notebook 99

15 Other notebook 101

16 Jupyter notebook changelog 103

i

ii

CHAPTER 1

The Jupyter Notebook

1.1 Introduction

The notebook extends the console-based approach to interactive computing in a qualitatively new direction, providing a
web-based application suitable for capturing the whole computation process: developing, documenting, and executing
code, as well as communicating the results. The Jupyter notebook combines two components:

A web application: a browser-based tool for interactive authoring of documents which combine explanatory text,
mathematics, computations and their rich media output.

Notebook documents: a representation of all content visible in the web application, including inputs and outputs of
the computations, explanatory text, mathematics, images, and rich media representations of objects.

See also:

See the installation guide on how to install the notebook and its dependencies.

1.1.1 Main features of the web application

• In-browser editing for code, with automatic syntax highlighting, indentation, and tab completion/introspection.

• The ability to execute code from the browser, with the results of computations attached to the code which
generated them.

• Displaying the result of computation using rich media representations, such as HTML, LaTeX, PNG, SVG, etc.
For example, publication-quality figures rendered by the matplotlib library, can be included inline.

• In-browser editing for rich text using the Markdown markup language, which can provide commentary for the
code, is not limited to plain text.

• The ability to easily include mathematical notation within markdown cells using LaTeX, and rendered natively
by MathJax.

1.1.2 Notebook documents

Notebook documents contains the inputs and outputs of a interactive session as well as additional text that accompanies
the code but is not meant for execution. In this way, notebook files can serve as a complete computational record of a
session, interleaving executable code with explanatory text, mathematics, and rich representations of resulting objects.
These documents are internally JSON files and are saved with the .ipynb extension. Since JSON is a plain text
format, they can be version-controlled and shared with colleagues.

1

http://jupyter.readthedocs.org/en/latest/install.html#install
http://matplotlib.org
http://daringfireball.net/projects/markdown/syntax
http://www.mathjax.org/
http://en.wikipedia.org/wiki/JSON

Jupyter Notebook Documentation, Release 5.0.0.dev

Notebooks may be exported to a range of static formats, including HTML (for example, for blog posts), reStructured-
Text, LaTeX, PDF, and slide shows, via the nbconvert command.

Furthermore, any .ipynb notebook document available from a public URL can be shared via the Jupyter Notebook
Viewer (nbviewer). This service loads the notebook document from the URL and renders it as a static web page.
The results may thus be shared with a colleague, or as a public blog post, without other users needing to install the
Jupyter notebook themselves. In effect, nbviewer is simply nbconvert as a web service, so you can do your own static
conversions with nbconvert, without relying on nbviewer.

See also:

Details on the notebook JSON file format

1.2 Starting the notebook server

You can start running a notebook server from the command line using the following command:

jupyter notebook

This will print some information about the notebook server in your console, and open a web browser to the URL of
the web application (by default, http://127.0.0.1:8888).

The landing page of the Jupyter notebook web application, the dashboard, shows the notebooks currently available
in the notebook directory (by default, the directory from which the notebook server was started).

You can create new notebooks from the dashboard with the New Notebook button, or open existing ones by clicking
on their name. You can also drag and drop .ipynb notebooks and standard .py Python source code files into the
notebook list area.

When starting a notebook server from the command line, you can also open a particular notebook directly, bypassing
the dashboard, with jupyter notebook my_notebook.ipynb. The .ipynb extension is assumed if no
extension is given.

When you are inside an open notebook, the File | Open... menu option will open the dashboard in a new browser tab,
to allow you to open another notebook from the notebook directory or to create a new notebook.

Note: You can start more than one notebook server at the same time, if you want to work on notebooks in different
directories. By default the first notebook server starts on port 8888, and later notebook servers search for ports near
that one. You can also manually specify the port with the --port option.

1.2.1 Creating a new notebook document

A new notebook may be created at any time, either from the dashboard, or using the File → New menu option from
within an active notebook. The new notebook is created within the same directory and will open in a new browser tab.
It will also be reflected as a new entry in the notebook list on the dashboard.

1.2.2 Opening notebooks

An open notebook has exactly one interactive session connected to an IPython kernel, which will execute code sent
by the user and communicate back results. This kernel remains active if the web browser window is closed, and
reopening the same notebook from the dashboard will reconnect the web application to the same kernel. In the
dashboard, notebooks with an active kernel have a Shutdown button next to them, whereas notebooks without an
active kernel have a Delete button in its place.

2 Chapter 1. The Jupyter Notebook

http://nbconvert.readthedocs.org/en/latest/
http://nbviewer.jupyter.org
http://nbviewer.jupyter.org
http://nbconvert.readthedocs.org/en/latest/
http://nbformat.readthedocs.org/en/latest/format_description.html#notebook-file-format
http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq

Jupyter Notebook Documentation, Release 5.0.0.dev

Other clients may connect to the same underlying IPython kernel. The notebook server always prints to the terminal
the full details of how to connect to each kernel, with messages such as the following:

[NotebookApp] Kernel started: 87f7d2c0-13e3-43df-8bb8-1bd37aaf3373

This long string is the kernel’s ID which is sufficient for getting the information necessary to connect to the kernel.
You can also request this connection data by running the %connect_info magic. This will print the same ID
information as well as the content of the JSON data structure it contains.

You can then, for example, manually start a Qt console connected to the same kernel from the command line, by
passing a portion of the ID:

$ ipython qtconsole --existing 87f7d2c0

Without an ID, --existing will connect to the most recently started kernel. This can also be done by running the
%qtconsole magic in the notebook.

See also:

Decoupled two-process model

1.3 Notebook user interface

When you create a new notebook document, you will be presented with the notebook name, a menu bar, a toolbar
and an empty code cell.

notebook name: The name of the notebook document is displayed at the top of the page, next to the IP[y]:
Notebook logo. This name reflects the name of the .ipynb notebook document file. Clicking on the notebook
name brings up a dialog which allows you to rename it. Thus, renaming a notebook from “Untitled0” to “My first
notebook” in the browser, renames the Untitled0.ipynb file to My first notebook.ipynb.

menu bar: The menu bar presents different options that may be used to manipulate the way the notebook functions.

toolbar: The tool bar gives a quick way of performing the most-used operations within the notebook, by clicking on
an icon.

code cell: the default type of cell, read on for an explanation of cells

Note: As of notebook version 4.1, the user interface allows for multiple cells to be selected. The quick celltype
selector, found in the menubar, will display a dash - when multiple cells are selected to indicate that the type of
the cells in the selection might not be unique. The quick selector can still be used to change the type of the selection
and will change the type of all the currently selected cells.

1.4 Structure of a notebook document

The notebook consists of a sequence of cells. A cell is a multiline text input field, and its contents can be executed by
using Shift-Enter, or by clicking either the “Play” button the toolbar, or Cell | Run in the menu bar. The execution
behavior of a cell is determined the cell’s type. There are four types of cells: code cells, markdown cells, raw cells
and heading cells. Every cell starts off being a code cell, but its type can be changed by using a drop-down on the
toolbar (which will be “Code”, initially), or via keyboard shortcuts.

For more information on the different things you can do in a notebook, see the collection of examples.

1.3. Notebook user interface 3

http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained
http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained
http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq
http://nbviewer.jupyter.org/github/jupyter/notebook/tree/master/docs/source/examples/Notebook/

Jupyter Notebook Documentation, Release 5.0.0.dev

1.4.1 Code cells

A code cell allows you to edit and write new code, with full syntax highlighting and tab completion. By default, the
language associated to a code cell is Python, but other languages, such as Julia and R, can be handled using cell
magic commands.

When a code cell is executed, code that it contains is sent to the kernel associated with the notebook. The results that
are returned from this computation are then displayed in the notebook as the cell’s output. The output is not limited to
text, with many other possible forms of output are also possible, including matplotlib figures and HTML tables
(as used, for example, in the pandas data analysis package). This is known as IPython’s rich display capability.

See also:

Rich Output example notebook

1.4.2 Markdown cells

You can document the computational process in a literate way, alternating descriptive text with code, using rich text.
In IPython this is accomplished by marking up text with the Markdown language. The corresponding cells are called
Markdown cells. The Markdown language provides a simple way to perform this text markup, that is, to specify which
parts of the text should be emphasized (italics), bold, form lists, etc.

When a Markdown cell is executed, the Markdown code is converted into the corresponding formatted rich text.
Markdown allows arbitrary HTML code for formatting.

Within Markdown cells, you can also include mathematics in a straightforward way, using standard LaTeX notation:
$...$ for inline mathematics and $$...$$ for displayed mathematics. When the Markdown cell is executed, the
LaTeX portions are automatically rendered in the HTML output as equations with high quality typography. This is
made possible by MathJax, which supports a large subset of LaTeX functionality

Standard mathematics environments defined by LaTeX and AMS-LaTeX (the amsmath package) also work, such as
\begin{equation}...\end{equation}, and \begin{align}...\end{align}. New LaTeX macros
may be defined using standard methods, such as \newcommand, by placing them anywhere between math delimiters
in a Markdown cell. These definitions are then available throughout the rest of the IPython session.

See also:

Markdown Cells example notebook

1.4.3 Raw cells

Raw cells provide a place in which you can write output directly. Raw cells are not evaluated by the notebook. When
passed through nbconvert, raw cells arrive in the destination format unmodified. For example, this allows you to type
full LaTeX into a raw cell, which will only be rendered by LaTeX after conversion by nbconvert.

1.4.4 Heading cells

If you want to provide structure for your document, you can use markdown headings. Markdown headings consist of
1 to 6 hash # signs # followed by a space and the title of your section. The markdown heading will be converted to a
clickable link for a section of the notebook. It is also used as a hint when exporting to other document formats, like
PDF. We recommend using only one markdown header in a cell and limit the cell’s content to the header text. For
flexibility of text format conversion, we suggest placing additional text in the next notebook cell.

4 Chapter 1. The Jupyter Notebook

http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained
http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magics-explained
https://nbviewer.jupyter.org/urls/raw.github.com/ipython/ipython/3.x/examples/IPython%20Kernel/Rich%20Output.ipynb
http://www.mathjax.org/
http://nbconvert.readthedocs.org/en/latest/

Jupyter Notebook Documentation, Release 5.0.0.dev

1.5 Basic workflow

The normal workflow in a notebook is, then, quite similar to a standard IPython session, with the difference that you
can edit cells in-place multiple times until you obtain the desired results, rather than having to rerun separate scripts
with the %run magic command.

Typically, you will work on a computational problem in pieces, organizing related ideas into cells and moving forward
once previous parts work correctly. This is much more convenient for interactive exploration than breaking up a
computation into scripts that must be executed together, as was previously necessary, especially if parts of them take a
long time to run.

At certain moments, it may be necessary to interrupt a calculation which is taking too long to complete. This may be
done with the Kernel | Interrupt menu option, or the Ctrl-m i keyboard shortcut. Similarly, it may be necessary or
desirable to restart the whole computational process, with the Kernel | Restart menu option or Ctrl-m . shortcut.

A notebook may be downloaded in either a .ipynb or .py file from the menu option File | Download as. Choosing
the .py option downloads a Python .py script, in which all rich output has been removed and the content of markdown
cells have been inserted as comments.

See also:

Running Code in the Jupyter Notebook example notebook

Notebook Basics example notebook

a warning about doing “roundtrip” conversions.

1.5.1 Keyboard shortcuts

All actions in the notebook can be performed with the mouse, but keyboard shortcuts are also available for the most
common ones. The essential shortcuts to remember are the following:

• Shift-Enter: run cell Execute the current cell, show output (if any), and jump to the next cell below. If
Shift-Enter is invoked on the last cell, a new code cell will also be created. Note that in the notebook,
typing Enter on its own never forces execution, but rather just inserts a new line in the current cell.
Shift-Enter is equivalent to clicking the Cell | Run menu item.

• Ctrl-Enter: run cell in-place Execute the current cell as if it were in “terminal mode”, where any output
is shown, but the cursor remains in the current cell. The cell’s entire contents are selected after execution,
so you can just start typing and only the new input will be in the cell. This is convenient for doing quick
experiments in place, or for querying things like filesystem content, without needing to create additional
cells that you may not want to be saved in the notebook.

• Alt-Enter: run cell, insert below Executes the current cell, shows the output, and inserts a new cell be-
tween the current cell and the cell below (if one exists). This is thus a shortcut for the sequence
Shift-Enter, Ctrl-m a. (Ctrl-m a adds a new cell above the current one.)

• Esc and Enter: Command mode and edit mode In command mode, you can easily navigate around the
notebook using keyboard shortcuts. In edit mode, you can edit text in cells.

For the full list of available shortcuts, click Help, Keyboard Shortcuts in the notebook menus.

1.6 Plotting

One major feature of the Jupyter notebook is the ability to display plots that are the output of running code cells.
The IPython kernel is designed to work seamlessly with the matplotlib plotting library to provide this functionality.
Specific plotting library integration is a feature of the kernel.

1.5. Basic workflow 5

https://nbviewer.jupyter.org/urls/raw.github.com/ipython/ipython/3.x/examples/Notebook/Running%20Code.ipynb
https://nbviewer.jupyter.org/urls/raw.github.com/ipython/ipython/3.x/examples/Notebook/Notebook%20Basics.ipynb
http://ipython.org/ipython-doc/dev/notebook/notebook.html#note-about-roundtrip
http://matplotlib.org

Jupyter Notebook Documentation, Release 5.0.0.dev

1.7 Installing kernels

For information on how to install a Python kernel, refer to the IPython install page.

Kernels for other languages can be found in the IPython wiki. They usually come with instruction what to run to make
the kernel available in the notebook.

1.8 Signing Notebooks

To prevent untrusted code from executing on users’ behalf when notebooks open, we have added a signature to the
notebook, stored in metadata. The notebook server verifies this signature when a notebook is opened. If the signature
stored in the notebook metadata does not match, javascript and HTML output will not be displayed on load, and must
be regenerated by re-executing the cells.

Any notebook that you have executed yourself in its entirety will be considered trusted, and its HTML and javascript
output will be displayed on load.

If you need to see HTML or Javascript output without re-executing, you can explicitly trust notebooks, such as those
shared with you, or those that you have written yourself prior to IPython 2.0, at the command-line with:

$ jupyter trust mynotebook.ipynb [other notebooks.ipynb]

This just generates a new signature stored in each notebook.

You can generate a new notebook signing key with:

$ jupyter trust --reset

1.9 Browser Compatibility

The Jupyter Notebook is officially supported the latest stable version the following browsers:

• Chrome

• Safari

• Firefox

The is mainly due to the notebook’s usage of WebSockets and the flexible box model.

The following browsers are unsupported:

• Safari < 5

• Firefox < 6

• Chrome < 13

• Opera (any): CSS issues, but execution might work

• Internet Explorer < 10

• Internet Explorer 10 (same as Opera)

Using Safari with HTTPS and an untrusted certificate is known to not work (websockets will fail).

6 Chapter 1. The Jupyter Notebook

http://ipython.org/install.html
https://github.com/ipython/ipython/wiki/IPython%20kernels%20for%20other%20languages

CHAPTER 2

UI Components

When opening bug reports or sending emails to the Jupyter mailing list, it is useful to know the names of different UI
components so that other developers and users have an easier time helping you diagnose your problems. This section
will familiarize you with the names of UI elements within the Notebook and the different Notebook modes.

2.1 Notebook Dashboard

When you launch jupyter notebook the first page that you encounter is the Notebook Dashboard.

2.2 Notebook Editor

Once you’ve selected a Notebook to edit, the Notebook will open in the Notebook Editor.

7

Jupyter Notebook Documentation, Release 5.0.0.dev

2.3 Interactive User Interface Tour of the Notebook

If you would like to learn more about the specific elements within the Notebook Editor, you can go through the User
Interface Tour by selecting Help in the menubar then selecting User Interface Tour.

2.3.1 Edit Mode and Notebook Editor

When a cell is in edit mode, the Cell Mode Indicator will change to reflect the cell’s state. This state is indicated by a
small pencil icon on the top right of the interface. When the cell is in command mode, there is no icon in that location.

8 Chapter 2. UI Components

Jupyter Notebook Documentation, Release 5.0.0.dev

2.4 File Editor

Now let’s say that you’ve chosen to open a Markdown file instead of a Notebook file whilst in the Notebook Dashboard.
If so, the file will be opened in the File Editor.

2.4. File Editor 9

Jupyter Notebook Documentation, Release 5.0.0.dev

10 Chapter 2. UI Components

CHAPTER 3

Configuration Overview

Beyond the default configuration settings, you can configure a rich array of options to suit your workflow. Here are
areas that are commonly configured when using Jupyter Notebook:

• Jupyter’s common configuration system

• Notebook server

• Notebook front-end client

• Notebook extensions

Let’s look at highlights of each area.

3.1 Jupyter’s Common Configuration system

Jupyter applications, from the Notebook to JupyterHub to nbgrader, share a common configuration system. The
process for creating a configuration file and editing settings is similar for all the Jupyter applications.

• Configuring a Jupyter application

• Using Python to set up the configuration files

• Configuring a language kernel

• traitlets provide a low-level architecture for configuration.

3.2 Notebook server

The Notebook server runs the language kernel and communicates with the front-end Notebook client (i.e. the familiar
notebook interface).

• Configuring the Notebook server

To create a jupyter_notebook_config.py file in the .jupyter directory, with all
the defaults commented out, use the following command:

$ jupyter notebook --generate-config

Command line arguments for configuration settings are documented in the configuration file and the
user documentation.

• Running a Notebook server

11

https://jupyter.readthedocs.org/en/latest/config.html#configuring-jupyter-applications
https://jupyter.readthedocs.org/en/latest/config.html#python-config-files
http://jupyter.readthedocs.org/en/latest/install.html#installing-kernels
https://traitlets.readthedocs.org/en/latest/config.html#module-traitlets.config

Jupyter Notebook Documentation, Release 5.0.0.dev

• Related: Configuring a language kernel to run in the Notebook server enables your server to run other languages,
like R or Julia.

3.3 Notebook front-end client

• How front-end configuration works

– Example: Changing the notebook’s default indentation setting

– Example: Restoring the notebook’s default indentation setting

• Persisting configuration settings

3.4 Notebook extensions

• Distributing Jupyter Extensions as Python Packages

• Extending the Notebook

Security in Jupyter notebooks: Since security policies vary from organization to organization, we encourage you to
consult with your security team on settings that would be best for your use cases. Our documentation offers some
responsible security practices, and we recommend becoming familiar with the practices.

12 Chapter 3. Configuration Overview

http://jupyter.readthedocs.org/en/latest/install.html#installing-kernels
https://jupyter-notebook.readthedocs.org/en/latest/examples/Notebook/Distributing%20Jupyter%20Extensions%20as%20Python%20Packages.html#Distributing-Jupyter-Extensions-as-Python-Packages
https://jupyter-notebook.readthedocs.org/en/latest/extending/index.html

CHAPTER 4

Config file and command line options

The notebook server can be run with a variety of command line arguments. A list of available options can be found
below in the options section.

Defaults for these options can also be set by creating a file named jupyter_notebook_config.py in your
Jupyter folder. The Jupyter folder is in your home directory, ~/.jupyter.

To create a jupyter_notebook_config.py file, with all the defaults commented out, you can use the following
command line:

$ jupyter notebook --generate-config

4.1 Options

This list of options can be generated by running the following and hitting enter:

$ jupyter notebook --help

Application.log_datefmt [Unicode] Default: ’%Y-%m-%d %H:%M:%S’

The date format used by logging formatters for %(asctime)s

Application.log_format [Unicode] Default: ’[%(name)s]%(highlevel)s %(message)s’

The Logging format template

Application.log_level [0|10|20|30|40|50|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’] Default: 30

Set the log level by value or name.

JupyterApp.answer_yes [Bool] Default: False

Answer yes to any prompts.

JupyterApp.config_file [Unicode] Default: ’’

Full path of a config file.

JupyterApp.config_file_name [Unicode] Default: ’’

Specify a config file to load.

JupyterApp.generate_config [Bool] Default: False

Generate default config file.

13

Jupyter Notebook Documentation, Release 5.0.0.dev

NotebookApp.allow_credentials [Bool] Default: False

Set the Access-Control-Allow-Credentials: true header

NotebookApp.allow_origin [Unicode] Default: ’’

Set the Access-Control-Allow-Origin header

Use ‘*’ to allow any origin to access your server.

Takes precedence over allow_origin_pat.

NotebookApp.allow_origin_pat [Unicode] Default: ’’

Use a regular expression for the Access-Control-Allow-Origin header

Requests from an origin matching the expression will get replies with:

Access-Control-Allow-Origin: origin

where origin is the origin of the request.

Ignored if allow_origin is set.

NotebookApp.allow_root [Bool] Default: False

Whether to allow the user to run the notebook as root.

NotebookApp.base_project_url [Unicode] Default: ’/’

DEPRECATED use base_url

NotebookApp.base_url [Unicode] Default: ’/’

The base URL for the notebook server.

Leading and trailing slashes can be omitted, and will automatically be added.

NotebookApp.browser [Unicode] Default: ’’

Specify what command to use to invoke a web browser when opening the notebook. If not specified, the default
browser will be determined by the webbrowser standard library module, which allows setting of the BROWSER
environment variable to override it.

NotebookApp.certfile [Unicode] Default: ’’

The full path to an SSL/TLS certificate file.

NotebookApp.client_ca [Unicode] Default: ’’

The full path to a certificate authority certificate for SSL/TLS client authentication.

NotebookApp.config_manager_class [Type] Default: ’notebook.services.config.manager.ConfigManager’

The config manager class to use

NotebookApp.contents_manager_class [Type] Default: ’notebook.services.contents.filemanager.FileContentsManager’

The notebook manager class to use.

NotebookApp.cookie_options [Dict] Default: {}

Extra keyword arguments to pass to set_secure_cookie. See tornado’s set_secure_cookie docs for details.

NotebookApp.cookie_secret [Bytes] Default: b’’

The random bytes used to secure cookies. By default this is a new random number every time you start the
Notebook. Set it to a value in a config file to enable logins to persist across server sessions.

14 Chapter 4. Config file and command line options

Jupyter Notebook Documentation, Release 5.0.0.dev

Note: Cookie secrets should be kept private, do not share config files with cookie_secret stored in plaintext (you
can read the value from a file).

NotebookApp.cookie_secret_file [Unicode] Default: ’’

The file where the cookie secret is stored.

NotebookApp.default_url [Unicode] Default: ’/tree’

The default URL to redirect to from /

NotebookApp.enable_mathjax [Bool] Default: True

Whether to enable MathJax for typesetting math/TeX

MathJax is the javascript library Jupyter uses to render math/LaTeX. It is very large, so you may want to disable
it if you have a slow internet connection, or for offline use of the notebook.

When disabled, equations etc. will appear as their untransformed TeX source.

NotebookApp.extra_nbextensions_path [List] Default: []

extra paths to look for Javascript notebook extensions

NotebookApp.extra_static_paths [List] Default: []

Extra paths to search for serving static files.

This allows adding javascript/css to be available from the notebook server machine, or overriding individual
files in the IPython

NotebookApp.extra_template_paths [List] Default: []

Extra paths to search for serving jinja templates.

Can be used to override templates from notebook.templates.

NotebookApp.file_to_run [Unicode] Default: ’’

No description

NotebookApp.ignore_minified_js [Bool] Default: False

Deprecated: Use minified JS file or not, mainly use during dev to avoid JS recompilation

NotebookApp.iopub_data_rate_limit [Float] Default: 0

(bytes/sec) Maximum rate at which messages can be sent on iopub before they are limited.

NotebookApp.iopub_msg_rate_limit [Float] Default: 0

(msg/sec) Maximum rate at which messages can be sent on iopub before they are limited.

NotebookApp.ip [Unicode] Default: ’localhost’

The IP address the notebook server will listen on.

NotebookApp.jinja_environment_options [Dict] Default: {}

Supply extra arguments that will be passed to Jinja environment.

NotebookApp.jinja_template_vars [Dict] Default: {}

Extra variables to supply to jinja templates when rendering.

NotebookApp.kernel_manager_class [Type] Default: ’notebook.services.kernels.kernelmanager.MappingKernelManager’

The kernel manager class to use.

4.1. Options 15

Jupyter Notebook Documentation, Release 5.0.0.dev

NotebookApp.kernel_spec_manager_class [Type] Default: ’jupyter_client.kernelspec.KernelSpecManager’

The kernel spec manager class to use. Should be a subclass of jupyter_client.kernelspec.KernelSpecManager.

The Api of KernelSpecManager is provisional and might change without warning between this version of
Jupyter and the next stable one.

NotebookApp.keyfile [Unicode] Default: ’’

The full path to a private key file for usage with SSL/TLS.

NotebookApp.login_handler_class [Type] Default: ’notebook.auth.login.LoginHandler’

The login handler class to use.

NotebookApp.logout_handler_class [Type] Default: ’notebook.auth.logout.LogoutHandler’

The logout handler class to use.

NotebookApp.mathjax_config [Unicode] Default: ’TeX-AMS-MML_HTMLorMML-full,Safe’

The MathJax.js configuration file that is to be used.

NotebookApp.mathjax_url [Unicode] Default: ’’

A custom url for MathJax.js. Should be in the form of a case-sensitive url to MathJax, for example:
/static/components/MathJax/MathJax.js

NotebookApp.nbserver_extensions [Dict] Default: {}

Dict of Python modules to load as notebook server extensions.Entry values can be used to enable and disable
the loading ofthe extensions.

NotebookApp.notebook_dir [Unicode] Default: ’’

The directory to use for notebooks and kernels.

NotebookApp.open_browser [Bool] Default: True

Whether to open in a browser after starting. The specific browser used is platform dependent and deter-
mined by the python standard library webbrowser module, unless it is overridden using the –browser (Note-
bookApp.browser) configuration option.

NotebookApp.password [Unicode] Default: ’’

Hashed password to use for web authentication.

To generate, type in a python/IPython shell:

from notebook.auth import passwd; passwd()

The string should be of the form type:salt:hashed-password.

NotebookApp.password_required [Bool] Default: False

Forces users to use a password for the Notebook server. This is useful in a multi user environment, for instance
when everybody in the LAN can access each other’s machine though ssh.

In such a case, server the notebook server on localhost is not secure since any user can connect to the notebook
server via ssh.

NotebookApp.port [Int] Default: 8888

The port the notebook server will listen on.

NotebookApp.port_retries [Int] Default: 50

The number of additional ports to try if the specified port is not available.

16 Chapter 4. Config file and command line options

Jupyter Notebook Documentation, Release 5.0.0.dev

NotebookApp.pylab [Unicode] Default: ’disabled’

DISABLED: use %pylab or %matplotlib in the notebook to enable matplotlib.

NotebookApp.rate_limit_window [Float] Default: 1.0

(sec) Time window used to check the message and data rate limits.

NotebookApp.reraise_server_extension_failures [Bool] Default: False

Reraise exceptions encountered loading server extensions?

NotebookApp.server_extensions [List] Default: []

DEPRECATED use the nbserver_extensions dict instead

NotebookApp.session_manager_class [Type] Default: ’notebook.services.sessions.sessionmanager.SessionManager’

The session manager class to use.

NotebookApp.ssl_options [Dict] Default: {}

Supply SSL options for the tornado HTTPServer. See the tornado docs for details.

NotebookApp.terminado_settings [Dict] Default: {}

Supply overrides for terminado. Currently only supports “shell_command”.

NotebookApp.tornado_settings [Dict] Default: {}

Supply overrides for the tornado.web.Application that the Jupyter notebook uses.

NotebookApp.trust_xheaders [Bool] Default: False

Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-For headerssent by the up-
stream reverse proxy. Necessary if the proxy handles SSL

NotebookApp.webapp_settings [Dict] Default: {}

DEPRECATED, use tornado_settings

NotebookApp.websocket_url [Unicode] Default: ’’

The base URL for websockets, if it differs from the HTTP server (hint: it almost certainly doesn’t).

Should be in the form of an HTTP origin: ws[s]://hostname[:port]

ConnectionFileMixin.connection_file [Unicode] Default: ’’

JSON file in which to store connection info [default: kernel-<pid>.json]

This file will contain the IP, ports, and authentication key needed to connect clients to this kernel. By default,
this file will be created in the security dir of the current profile, but can be specified by absolute path.

ConnectionFileMixin.control_port [Int] Default: 0

set the control (ROUTER) port [default: random]

ConnectionFileMixin.hb_port [Int] Default: 0

set the heartbeat port [default: random]

ConnectionFileMixin.iopub_port [Int] Default: 0

set the iopub (PUB) port [default: random]

ConnectionFileMixin.ip [Unicode] Default: ’’

Set the kernel’s IP address [default localhost]. If the IP address is something other than localhost, then Consoles
on other machines will be able to connect to the Kernel, so be careful!

4.1. Options 17

Jupyter Notebook Documentation, Release 5.0.0.dev

ConnectionFileMixin.shell_port [Int] Default: 0

set the shell (ROUTER) port [default: random]

ConnectionFileMixin.stdin_port [Int] Default: 0

set the stdin (ROUTER) port [default: random]

ConnectionFileMixin.transport [‘tcp’|’ipc’] Default: ’tcp’

No description

KernelManager.autorestart [Bool] Default: True

Should we autorestart the kernel if it dies.

KernelManager.kernel_cmd [List] Default: []

DEPRECATED: Use kernel_name instead.

The Popen Command to launch the kernel. Override this if you have a custom kernel. If kernel_cmd is specified
in a configuration file, Jupyter does not pass any arguments to the kernel, because it cannot make any assump-
tions about the arguments that the kernel understands. In particular, this means that the kernel does not receive
the option –debug if it given on the Jupyter command line.

Session.buffer_threshold [Int] Default: 1024

Threshold (in bytes) beyond which an object’s buffer should be extracted to avoid pickling.

Session.check_pid [Bool] Default: True

Whether to check PID to protect against calls after fork.

This check can be disabled if fork-safety is handled elsewhere.

Session.copy_threshold [Int] Default: 65536

Threshold (in bytes) beyond which a buffer should be sent without copying.

Session.debug [Bool] Default: False

Debug output in the Session

Session.digest_history_size [Int] Default: 65536

The maximum number of digests to remember.

The digest history will be culled when it exceeds this value.

Session.item_threshold [Int] Default: 64

The maximum number of items for a container to be introspected for custom serialization. Containers larger
than this are pickled outright.

Session.key [CBytes] Default: b’’

execution key, for signing messages.

Session.keyfile [Unicode] Default: ’’

path to file containing execution key.

Session.metadata [Dict] Default: {}

Metadata dictionary, which serves as the default top-level metadata dict for each message.

Session.packer [DottedObjectName] Default: ’json’

The name of the packer for serializing messages. Should be one of ‘json’, ‘pickle’, or an import name for a
custom callable serializer.

18 Chapter 4. Config file and command line options

Jupyter Notebook Documentation, Release 5.0.0.dev

Session.session [CUnicode] Default: ’’

The UUID identifying this session.

Session.signature_scheme [Unicode] Default: ’hmac-sha256’

The digest scheme used to construct the message signatures. Must have the form ‘hmac-HASH’.

Session.unpacker [DottedObjectName] Default: ’json’

The name of the unpacker for unserializing messages. Only used with custom functions for packer.

Session.username [Unicode] Default: ’username’

Username for the Session. Default is your system username.

MultiKernelManager.default_kernel_name [Unicode] Default: ’python3’

The name of the default kernel to start

MultiKernelManager.kernel_manager_class [DottedObjectName] Default: ’jupyter_client.ioloop.IOLoopKernelManager’

The kernel manager class. This is configurable to allow subclassing of the KernelManager for customized
behavior.

MappingKernelManager.root_dir [Unicode] Default: ’’

No description

ContentsManager.checkpoints [Instance] Default: None

No description

ContentsManager.checkpoints_class [Type] Default: ’notebook.services.contents.checkpoints.Checkpoints’

No description

ContentsManager.checkpoints_kwargs [Dict] Default: {}

No description

ContentsManager.hide_globs [List] Default: [’__pycache__’, ’*.pyc’, ’*.pyo’, ’.DS_Store’,
’*.so’, ’*.dyl...

Glob patterns to hide in file and directory listings.

ContentsManager.pre_save_hook [Any] Default: None

Python callable or importstring thereof

To be called on a contents model prior to save.

This can be used to process the structure, such as removing notebook outputs or other side effects that should
not be saved.

It will be called as (all arguments passed by keyword):

hook(path=path, model=model, contents_manager=self)

• model: the model to be saved. Includes file contents. Modifying this dict will affect the file that is stored.

• path: the API path of the save destination

• contents_manager: this ContentsManager instance

ContentsManager.untitled_directory [Unicode] Default: ’Untitled Folder’

The base name used when creating untitled directories.

4.1. Options 19

Jupyter Notebook Documentation, Release 5.0.0.dev

ContentsManager.untitled_file [Unicode] Default: ’untitled’

The base name used when creating untitled files.

ContentsManager.untitled_notebook [Unicode] Default: ’Untitled’

The base name used when creating untitled notebooks.

FileManagerMixin.use_atomic_writing [Bool] Default: True

By default notebooks are saved on disk on a temporary file and then if succefully written, it replaces the old ones.
This procedure, namely ‘atomic_writing’, causes some bugs on file system whitout operation order enforcement
(like some networked fs). If set to False, the new notebook is written directly on the old one which could fail
(eg: full filesystem or quota)

FileContentsManager.post_save_hook [Any] Default: None

Python callable or importstring thereof

to be called on the path of a file just saved.

This can be used to process the file on disk, such as converting the notebook to a script or HTML via nbconvert.

It will be called as (all arguments passed by keyword):

hook(os_path=os_path, model=model, contents_manager=instance)

• path: the filesystem path to the file just written

• model: the model representing the file

• contents_manager: this ContentsManager instance

FileContentsManager.root_dir [Unicode] Default: ’’

No description

FileContentsManager.save_script [Bool] Default: False

DEPRECATED, use post_save_hook. Will be removed in Notebook 5.0

NotebookNotary.algorithm [‘sha256’|’sha384’|’sha512’|’md5’|’sha1’|’sha224’] Default: ’sha256’

The hashing algorithm used to sign notebooks.

NotebookNotary.cache_size [Int] Default: 65535

The number of notebook signatures to cache. When the number of signatures exceeds this value, the oldest 25%
of signatures will be culled.

NotebookNotary.db_file [Unicode] Default: ’’

The sqlite file in which to store notebook signatures. By default, this will be in your Jupyter data directory. You
can set it to ‘:memory:’ to disable sqlite writing to the filesystem.

NotebookNotary.secret [Bytes] Default: b’’

The secret key with which notebooks are signed.

NotebookNotary.secret_file [Unicode] Default: ’’

The file where the secret key is stored.

KernelSpecManager.ensure_native_kernel [Bool] Default: True

If there is no Python kernelspec registered and the IPython kernel is available, ensure it is added to the spec list.

20 Chapter 4. Config file and command line options

Jupyter Notebook Documentation, Release 5.0.0.dev

KernelSpecManager.kernel_spec_class [Type] Default: ’jupyter_client.kernelspec.KernelSpec’

The kernel spec class. This is configurable to allow subclassing of the KernelSpecManager for customized
behavior.

KernelSpecManager.whitelist [Set] Default: set()

Whitelist of allowed kernel names.

By default, all installed kernels are allowed.

4.1. Options 21

Jupyter Notebook Documentation, Release 5.0.0.dev

22 Chapter 4. Config file and command line options

CHAPTER 5

Running a notebook server

The Jupyter notebook web application is based on a server-client structure. The notebook server uses a two-process
kernel architecture based on ZeroMQ, as well as Tornado for serving HTTP requests.

Note: By default, a notebook server runs locally at 127.0.0.1:8888 and is accessible only from localhost. You may
access the notebook server from the browser using http://127.0.0.1:8888.

This document describes how you can secure a notebook server and how to run it on a public interface.

Important: This is not the multi-user server you are looking for. This document describes how you can run a
public server with a single user. This should only be done by someone who wants remote access to their personal
machine. Even so, doing this requires a thorough understanding of the set-ups limitations and security implications. If
you allow multiple users to access a notebook server as it is described in this document, their commands may collide,
clobber and overwrite each other.

If you want a multi-user server, the official solution is JupyterHub. To use JupyterHub, you need a Unix server
(typically Linux) running somewhere that is accessible to your users on a network. This may run over the public
internet, but doing so introduces additional of security concerns.

5.1 Securing a notebook server

You can protect your notebook server with a simple single password by configuring the NotebookApp.password
setting in jupyter_notebook_config.py.

5.1.1 Prerequisite: A notebook configuration file

Check to see if you have a notebook configuration file, jupyter_notebook_config.py. The default location
for this file is your Jupyter folder in your home directory, ~/.jupyter.

If you don’t already have one, create a config file for the notebook using the following command:

$ jupyter notebook --generate-config

5.1.2 Preparing a hashed password

You can prepare a hashed password using the function notebook.auth.security.passwd():

23

http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq
http://ipython.org/ipython-doc/dev/overview.html#ipythonzmq
http://zeromq.org
http://www.tornadoweb.org
https://jupyterhub.readthedocs.io/en/latest/
https://jupyterhub.readthedocs.io/en/latest/getting-started.html#security

Jupyter Notebook Documentation, Release 5.0.0.dev

In [1]: from notebook.auth import passwd
In [2]: passwd()
Enter password:
Verify password:
Out[2]: 'sha1:67c9e60bb8b6:9ffede0825894254b2e042ea597d771089e11aed'

Caution: passwd() when called with no arguments will prompt you to enter and verify your password
such as in the above code snippet. Although the function can also be passed a string as an argument such as
passwd(’mypassword’), please do not pass a string as an argument inside an IPython session, as it will be
saved in your input history.

5.1.3 Adding hashed password to your notebook configuration file

You can then add the hashed password to your jupyter_notebook_config.py. The default location for this
file jupyter_notebook_config.py is in your Jupyter folder in your home directory, ~/.jupyter, e.g.:

c.NotebookApp.password = u'sha1:67c9e60bb8b6:9ffede0825894254b2e042ea597d771089e11aed'

5.1.4 Using SSL for encrypted communication

When using a password, it is a good idea to also use SSL with a web certificate, so that your hashed password is not
sent unencrypted by your browser.

Important: Web security is rapidly changing and evolving. We provide this document as a convenience to the user,
and recommend that the user keep current on changes that may impact security, such as new releases of OpenSSL.
The Open Web Application Security Project (OWASP) website is a good resource on general security issues and web
practices.

You can start the notebook to communicate via a secure protocol mode by setting the certfile option to your
self-signed certificate, i.e. mycert.pem, with the command:

$ jupyter notebook --certfile=mycert.pem --keyfile mykey.key

Tip: A self-signed certificate can be generated with openssl. For example, the following command will create a
certificate valid for 365 days with both the key and certificate data written to the same file:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout mykey.key -out mycert.pem

When starting the notebook server, your browser may warn that your self-signed certificate is insecure or unrecognized.
If you wish to have a fully compliant self-signed certificate that will not raise warnings, it is possible (but rather
involved) to create one, as explained in detail in this tutorial. Alternatively, you may use Let’s Encrypt to acquire a
free SSL certificate and follow the steps in Using Let’s Encrypt to set up a public server.

5.2 Running a public notebook server

If you want to access your notebook server remotely via a web browser, you can do so by running a public notebook
server. For optimal security when running a public notebook server, you should first secure the server with a password
and SSL/HTTPS as described in Securing a notebook server.

24 Chapter 5. Running a notebook server

https://www.owasp.org
http://arstechnica.com/security/news/2009/12/how-to-get-set-with-a-secure-sertificate-for-free.ars
https://letsencrypt.org

Jupyter Notebook Documentation, Release 5.0.0.dev

Start by creating a certificate file and a hashed password, as explained in Securing a notebook server.

If you don’t already have one, create a config file for the notebook using the following command line:

$ jupyter notebook --generate-config

In the ~/.jupyter directory, edit the notebook config file, jupyter_notebook_config.py. By default, the
notebook config file has all fields commented out. The minimum set of configuration options that you should to
uncomment and edit in jupyter_notebook_config.py is the following:

Set options for certfile, ip, password, and toggle off browser auto-opening
c.NotebookApp.certfile = u'/absolute/path/to/your/certificate/mycert.pem'
c.NotebookApp.keyfile = u'/absolute/path/to/your/certificate/mykey.key'
Set ip to '*' to bind on all interfaces (ips) for the public server
c.NotebookApp.ip = '*'
c.NotebookApp.password = u'sha1:bcd259ccf...<your hashed password here>'
c.NotebookApp.open_browser = False

It is a good idea to set a known, fixed port for server access
c.NotebookApp.port = 9999

You can then start the notebook using the jupyter notebook command.

5.2.1 Using Let’s Encrypt

Let’s Encrypt provides free SSL/TLS certificates. You can also set up a public server using a Let’s Encrypt certificate.

Running a public notebook server will be similar when using a Let’s Encrypt certificate with a few configuration
changes. Here are the steps:

1. Create a Let’s Encrypt certificate.

2. Use Preparing a hashed password to create one.

3. If you don’t already have config file for the notebook, create one using the following command:

$ jupyter notebook --generate-config

4. In the ~/.jupyter directory, edit the notebook config file, jupyter_notebook_config.py. By default,
the notebook config file has all fields commented out. The minimum set of configuration options that you should to
uncomment and edit in jupyter_notebook_config.py is the following:

Set options for certfile, ip, password, and toggle off browser auto-opening
c.NotebookApp.certfile = u'/absolute/path/to/your/certificate/fullchain.pem'
c.NotebookApp.keyfile = u'/absolute/path/to/your/certificate/privkey.pem'
Set ip to '*' to bind on all interfaces (ips) for the public server
c.NotebookApp.ip = '*'
c.NotebookApp.password = u'sha1:bcd259ccf...<your hashed password here>'
c.NotebookApp.open_browser = False

It is a good idea to set a known, fixed port for server access
c.NotebookApp.port = 9999

You can then start the notebook using the jupyter notebook command.

Important: Use ‘https’. Keep in mind that when you enable SSL support, you must access the notebook server over
https://, not over plain http://. The startup message from the server prints a reminder in the console, but it is
easy to overlook this detail and think the server is for some reason non-responsive.

5.2. Running a public notebook server 25

https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org/getting-started/

Jupyter Notebook Documentation, Release 5.0.0.dev

When using SSL, always access the notebook server with ‘https://’.

You may now access the public server by pointing your browser to https://your.host.com:9999 where
your.host.com is your public server’s domain.

5.2.2 Firewall Setup

To function correctly, the firewall on the computer running the jupyter notebook server must be con-
figured to allow connections from client machines on the access port c.NotebookApp.port set in
jupyter_notebook_config.py port to allow connections to the web interface. The firewall must also allow
connections from 127.0.0.1 (localhost) on ports from 49152 to 65535. These ports are used by the server to commu-
nicate with the notebook kernels. The kernel communication ports are chosen randomly by ZeroMQ, and may require
multiple connections per kernel, so a large range of ports must be accessible.

5.3 Running the notebook with a customized URL prefix

The notebook dashboard, which is the landing page with an overview of the notebooks in your working directory, is
typically found and accessed at the default URL http://localhost:8888/.

If you prefer to customize the URL prefix for the notebook dashboard, you can do so through modify-
ing jupyter_notebook_config.py. For example, if you prefer that the notebook dashboard be lo-
cated with a sub-directory that contains other ipython files, e.g. http://localhost:8888/ipython/,
you can do so with configuration options like the following (see above for instructions about modifying
jupyter_notebook_config.py):

c.NotebookApp.base_url = '/ipython/'

5.4 Embedding the notebook in another website

Sometimes you may want to embed the notebook somewhere on your website, e.g. in an IFrame. To do
this, you may need to override the Content-Security-Policy to allow embedding. Assuming your website is at
https://mywebsite.example.com, you can embed the notebook on your website with the following configuration set-
ting in jupyter_notebook_config.py:

c.NotebookApp.tornado_settings = {
'headers': {

'Content-Security-Policy': "frame-ancestors 'https://mywebsite.example.com' 'self' "
}

}

When embedding the notebook in a website using an iframe, consider putting the notebook in single-tab mode. Since
the notebook opens some links in new tabs by default, single-tab mode keeps the notebook from opening additional
tabs. Adding the following to ~/.jupyter/custom/custom.js will enable single-tab mode:

define(['base/js/namespace'], function(Jupyter){
Jupyter._target = '_self';

});

26 Chapter 5. Running a notebook server

Jupyter Notebook Documentation, Release 5.0.0.dev

5.5 Known issues

5.5.1 Proxies

When behind a proxy, especially if your system or browser is set to autodetect the proxy, the notebook web application
might fail to connect to the server’s websockets, and present you with a warning at startup. In this case, you need to
configure your system not to use the proxy for the server’s address.

For example, in Firefox, go to the Preferences panel, Advanced section, Network tab, click ‘Settings...’, and add the
address of the notebook server to the ‘No proxy for’ field.

5.5.2 Docker CMD

Using jupyter notebook as a Docker CMD results in kernels repeatedly crashing, likely due to a lack of PID
reaping. To avoid this, use the tini init as your Dockerfile ENTRYPOINT:

Add Tini. Tini operates as a process subreaper for jupyter. This prevents
kernel crashes.
ENV TINI_VERSION v0.6.0
ADD https://github.com/krallin/tini/releases/download/${TINI_VERSION}/tini /usr/bin/tini
RUN chmod +x /usr/bin/tini
ENTRYPOINT ["/usr/bin/tini", "--"]

EXPOSE 8888
CMD ["jupyter", "notebook", "--port=8888", "--no-browser", "--ip=0.0.0.0"]

5.5. Known issues 27

https://docs.docker.com/reference/builder/#cmd
https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://github.com/krallin/tini

Jupyter Notebook Documentation, Release 5.0.0.dev

28 Chapter 5. Running a notebook server

CHAPTER 6

Security in Jupyter notebooks

As Jupyter notebooks become more popular for sharing and collaboration, the potential for malicious people to attempt
to exploit the notebook for their nefarious purposes increases. IPython 2.0 introduces a security model to prevent
execution of untrusted code without explicit user input.

6.1 The problem

The whole point of Jupyter is arbitrary code execution. We have no desire to limit what can be done with a notebook,
which would negatively impact its utility.

Unlike other programs, a Jupyter notebook document includes output. Unlike other documents, that output exists in a
context that can execute code (via Javascript).

The security problem we need to solve is that no code should execute just because a user has opened a notebook that
they did not write. Like any other program, once a user decides to execute code in a notebook, it is considered trusted,
and should be allowed to do anything.

6.2 Our security model

• Untrusted HTML is always sanitized

• Untrusted Javascript is never executed

• HTML and Javascript in Markdown cells are never trusted

• Outputs generated by the user are trusted

• Any other HTML or Javascript (in Markdown cells, output generated by others) is never trusted

• The central question of trust is “Did the current user do this?”

6.3 The details of trust

Jupyter notebooks store a signature in metadata, which is used to answer the question “Did the current user do this?”

This signature is a digest of the notebooks contents plus a secret key, known only to the user. The secret key is a
user-only readable file in the Jupyter data directory. By default, this is:

29

Jupyter Notebook Documentation, Release 5.0.0.dev

~/.local/share/jupyter/notebook_secret # linux
~/Library/Jupyter/notebook_secret # OS X
%APPDATA%/jupyter/notebook_secret # Windows

When a notebook is opened by a user, the server computes a signature with the user’s key, and compares it with the
signature stored in the notebook’s metadata. If the signature matches, HTML and Javascript output in the notebook
will be trusted at load, otherwise it will be untrusted.

Any output generated during an interactive session is trusted.

6.3.1 Updating trust

A notebook’s trust is updated when the notebook is saved. If there are any untrusted outputs still in the notebook, the
notebook will not be trusted, and no signature will be stored. If all untrusted outputs have been removed (either via
Clear Output or re-execution), then the notebook will become trusted.

While trust is updated per output, this is only for the duration of a single session. A notebook file on disk is either
trusted or not in its entirety.

6.3.2 Explicit trust

Sometimes re-executing a notebook to generate trusted output is not an option, either because dependencies are un-
available, or it would take a long time. Users can explicitly trust a notebook in two ways:

• At the command-line, with:

jupyter trust /path/to/notebook.ipynb

• After loading the untrusted notebook, with File / Trust Notebook

These two methods simply load the notebook, compute a new signature with the user’s key, and then store the newly
signed notebook.

6.4 Reporting security issues

If you find a security vulnerability in Jupyter, either a failure of the code to properly implement the model described
here, or a failure of the model itself, please report it to security@ipython.org.

If you prefer to encrypt your security reports, you can use this PGP public key.

6.5 Affected use cases

Some use cases that work in Jupyter 1.0 will become less convenient in 2.0 as a result of the security changes. We do
our best to minimize these annoyance, but security is always at odds with convenience.

6.5.1 Javascript and CSS in Markdown cells

While never officially supported, it had become common practice to put hidden Javascript or CSS styling in Markdown
cells, so that they would not be visible on the page. Since Markdown cells are now sanitized (by Google Caja), all
Javascript (including click event handlers, etc.) and CSS will be stripped.

30 Chapter 6. Security in Jupyter notebooks

mailto:security@ipython.org
https://developers.google.com/caja

Jupyter Notebook Documentation, Release 5.0.0.dev

We plan to provide a mechanism for notebook themes, but in the meantime styling the notebook can only be done
via either custom.css or CSS in HTML output. The latter only have an effect if the notebook is trusted, because
otherwise the output will be sanitized just like Markdown.

6.5.2 Collaboration

When collaborating on a notebook, people probably want to see the outputs produced by their colleagues’ most recent
executions. Since each collaborator’s key will differ, this will result in each share starting in an untrusted state. There
are three basic approaches to this:

• re-run notebooks when you get them (not always viable)

• explicitly trust notebooks via jupyter trust or the notebook menu (annoying, but easy)

• share a notebook secret, and use configuration dedicated to the collaboration while working on the project.

When sharing a notebook secret across configurations, you can use

c.NotebookApp.secret_file = "/path/to/notebook_secret"

to specify a non-default path to the secret file.

6.5. Affected use cases 31

Jupyter Notebook Documentation, Release 5.0.0.dev

32 Chapter 6. Security in Jupyter notebooks

CHAPTER 7

Configuring the notebook frontend

Note: The ability to configure the notebook frontend UI and preferences is still a work in progress.

This document is a rough explanation on how you can persist some configuration options for the notebook JavaScript.

There is no exhaustive list of all the configuration options as most options are passed down to other libraries, which
means that non valid configuration can be ignored without any error messages.

7.1 How front end configuration works

The frontend configuration system works as follows:

• get a handle of a configurable JavaScript object.

• access its configuration attribute.

• update its configuration attribute with a JSON patch.

7.2 Example - Changing the notebook’s default indentation

This example explains how to change the default setting indentUnit for CodeMirror Code Cells:

var cell = Jupyter.notebook.get_selected_cell();
var config = cell.config;
var patch = {

CodeCell:{
cm_config:{indentUnit:2}

}
}

config.update(patch)

You can enter the previous snippet in your browser’s JavaScript console once. Then reload the notebook page in your
browser. Now, the preferred indent unit should be equal to two spaces. The custom setting persists and you do not
need to reissue the patch on new notebooks.

indentUnit, used in this example, is one of the many CodeMirror options which are available for configuration.

33

https://codemirror.net/doc/manual.html#option_indentUnit

Jupyter Notebook Documentation, Release 5.0.0.dev

7.3 Example - Restoring the notebook’s default indentation

If you want to restore a notebook frontend preference to its default value, you will enter a JSON patch with a null
value for the preference setting.

For example, let’s restore the indent setting indentUnit to its default of four spaces. Enter the following code
snippet in your JavaScript console:

var cell = Jupyter.notebook.get_selected_cell();
var config = cell.config;
var patch = {

CodeCell:{
cm_config:{indentUnit: null} # only change here.

}
}

config.update(patch)

Reload the notebook in your browser and the default indent should again be two spaces.

7.4 Persisting configuration settings

Under the hood, Jupyter will persist the preferred configuration settings in
~/.jupyter/nbconfig/<section>.json, with <section> taking various value depending on the
page where the configuration is issued. <section> can take various values like notebook, tree, and editor.
A common section contains configuration settings shared by all pages.

34 Chapter 7. Configuring the notebook frontend

CHAPTER 8

Distributing Jupyter Extensions as Python Packages

8.1 Overview

8.1.1 How can the notebook be extended?

The Jupyter Notebook client and server application are both deeply customizable. Their behavior can be extended by
creating, respectively:

• nbextension: a notebook extension

– a single JS file, or directory of JavaScript, Cascading StyleSheets, etc. that contain at minimum a JavaScript
module packaged as an AMD modules that exports a function load_ipython_extension

• server extension: an importable Python module

– that implements load_jupyter_server_extension

• bundler extension: an importable Python module with generated File -> Download as / Deploy as menu item
trigger

– that implements bundle

8.1.2 Why create a Python package for Jupyter extensions?

Since it is rare to have a server extension that does not have any frontend components (an nbextension), for convenience
and consistency, all these client and server extensions with their assets can be packaged and versioned together as a
Python package with a few simple commands. This makes installing the package of extensions easier and less error-
prone for the user.

8.2 Installation of Jupyter Extensions

8.2.1 Install a Python package containing Jupyter Extensions

There are several ways that you may get a Python package containing Jupyter Extensions. Commonly, you will use a
package manager for your system:

pip install helpful_package
or
conda install helpful_package
or

35

https://en.wikipedia.org/wiki/Asynchronous_module_definition

Jupyter Notebook Documentation, Release 5.0.0.dev

apt-get install helpful_package

where 'helpful_package' is a Python package containing one or more Jupyter Extensions

8.2.2 Enable a Server Extension

The simplest case would be to enable a server extension which has no frontend components.

A pip user that wants their configuration stored in their home directory would type the following command:

jupyter serverextension enable --py helpful_package

Alternatively, a virtualenv or conda user can pass --sys-prefix which keeps their environment isolated and
reproducible. For example:

Make sure that your virtualenv or conda environment is activated
[source] activate my-environment

jupyter serverextension enable --py helpful_package --sys-prefix

8.2.3 Install the nbextension assets

If a package also has an nbextension with frontend assets that must be available (but not neccessarily enabled by
default), install these assets with the following command:

jupyter nbextension install --py helpful_package # or --sys-prefix if using virtualenv or conda

8.2.4 Enable nbextension assets

If a package has assets that should be loaded every time a Jupyter app (e.g. lab, notebook, dashboard, terminal) is
loaded in the browser, the following command can be used to enable the nbextension:

jupyter nbextension enable --py helpful_package # or --sys-prefix if using virtualenv or conda

8.3 Did it work? Check by listing Jupyter Extensions.

After running one or more extension installation steps, you can list what is presently known about nbextensions, server
extensions, or bundler extensions. The following commands will list which extensions are available, whether they are
enabled, and other extension details:

jupyter nbextension list
jupyter serverextension list
jupyter bundlerextension list

8.4 Additional resources on creating and distributing packages

Of course, in addition to the files listed, there are number of other files one needs to build a proper package.
Here are some good resources: - The Hitchhiker’s Guide to Packaging - Repository Structure and Python
by Kenneth Reitz

36 Chapter 8. Distributing Jupyter Extensions as Python Packages

http://the-hitchhikers-guide-to-packaging.readthedocs.org/en/latest/quickstart.html
http://www.kennethreitz.org/essays/repository-structure-and-python

Jupyter Notebook Documentation, Release 5.0.0.dev

How you distribute them, too, is important: - Packaging and Distributing Projects - conda: Building
packages

Here are some tools to get you started: - generator-nbextension

8.5 Example - Server extension

8.5.1 Creating a Python package with a server extension

Here is an example of a python module which contains a server extension directly on itself. It has this directory
structure:

- setup.py
- MANIFEST.in
- my_module/

- __init__.py

8.5.2 Defining the server extension

This example shows that the server extension and its load_jupyter_server_extension function are defined
in the __init__.py file.

my_module/__init__.py

def _jupyter_server_extension_paths():
return [{

"module": "my_module"
}]

def load_jupyter_server_extension(nbapp):
nbapp.log.info("my module enabled!")

8.5.3 Install and enable the server extension

Which a user can install with:

jupyter serverextension enable --py my_module [--sys-prefix]

8.6 Example - Server extension and nbextension

8.6.1 Creating a Python package with a server extension and nbextension

Here is another server extension, with a front-end module. It assumes this directory structure:

- setup.py
- MANIFEST.in
- my_fancy_module/

- __init__.py

8.5. Example - Server extension 37

http://python-packaging-user-guide.readthedocs.org/en/latest/distributing/
http://conda.pydata.org/docs/building/build.html
http://conda.pydata.org/docs/building/build.html
https://github.com/Anaconda-Server/generator-nbextension

Jupyter Notebook Documentation, Release 5.0.0.dev

- static/
index.js

8.6.2 Defining the server extension and nbextension

This example again shows that the server extension and its load_jupyter_server_extension function are
defined in the __init__.py file. This time, there is also a function _jupyter_nbextension_path for the
nbextension.

my_fancy_module/__init__.py

def _jupyter_server_extension_paths():
return [{

"module": "my_fancy_module"
}]

Jupyter Extension points
def _jupyter_nbextension_paths():

return [dict(
section="notebook",
the path is relative to the `my_fancy_module` directory
src="static",
directory in the `nbextension/` namespace
dest="my_fancy_module",
also in the `nbextension/` namespace
require="my_fancy_module/index")]

def load_jupyter_server_extension(nbapp):
nbapp.log.info("my module enabled!")

8.6.3 Install and enable the server extension and nbextension

The user can install and enable the extensions with the following set of commands:

jupyter nbextension install --py my_fancy_module [--sys-prefix|--user]
jupyter nbextension enable --py my_fancy_module [--sys-prefix|--system]
jupyter serverextension enable --py my_fancy_module [--sys-prefix|--system]

8.7 Example - Bundler extension

8.7.1 Creating a Python package with a bundlerextension

Here is a bundler extension that adds a Download as -> Notebook Tarball (tar.gz) option to the notebook File menu.
It assumes this directory structure:

- setup.py
- MANIFEST.in
- my_tarball_bundler/

- __init__.py

38 Chapter 8. Distributing Jupyter Extensions as Python Packages

Jupyter Notebook Documentation, Release 5.0.0.dev

8.7.2 Defining the bundler extension

This example shows that the bundler extension and its bundle function are defined in the __init__.py file.

my_tarball_bundler/__init__.py

import tarfile
import io
import os
import nbformat

def _jupyter_bundlerextension_paths():
"""Declare bundler extensions provided by this package."""
return [{

unique bundler name
"name": "tarball_bundler",
module containing bundle function
"module_name": "my_tarball_bundler",
human-redable menu item label
"label" : "Notebook Tarball (tar.gz)",
group under 'deploy' or 'download' menu
"group" : "download",

}]

def bundle(handler, model):
"""Create a compressed tarball containing the notebook document.

Parameters

handler : tornado.web.RequestHandler

Handler that serviced the bundle request
model : dict

Notebook model from the configured ContentManager
"""
notebook_filename = model['name']
notebook_content = nbformat.writes(model['content']).encode('utf-8')
notebook_name = os.path.splitext(notebook_filename)[0]
tar_filename = '{}.tar.gz'.format(notebook_name)

info = tarfile.TarInfo(notebook_filename)
info.size = len(notebook_content)

with io.BytesIO() as tar_buffer:
with tarfile.open(tar_filename, "w:gz", fileobj=tar_buffer) as tar:

tar.addfile(info, io.BytesIO(notebook_content))

Set headers to trigger browser download
handler.set_header('Content-Disposition',

'attachment; filename="{}"'.format(tar_filename))
handler.set_header('Content-Type', 'application/gzip')

Return the buffer value as the response
handler.finish(tar_buffer.getvalue())

See Extending the Notebook for more documentation about writing nbextensions, server extensions, and bundler
extensions.

8.7. Example - Bundler extension 39

Jupyter Notebook Documentation, Release 5.0.0.dev

40 Chapter 8. Distributing Jupyter Extensions as Python Packages

CHAPTER 9

Extending the Notebook

Certain subsystems of the notebook server are designed to be extended or overridden by users. These documents
explain these systems, and show how to override the notebook’s defaults with your own custom behavior.

9.1 Contents API

The Jupyter Notebook web application provides a graphical interface for creating, opening, renaming, and deleting
files in a virtual filesystem.

The ContentsManager class defines an abstract API for translating these interactions into operations on a particular
storage medium. The default implementation, FileContentsManager, uses the local filesystem of the server for
storage and straightforwardly serializes notebooks into JSON. Users can override these behaviors by supplying custom
subclasses of ContentsManager.

This section describes the interface implemented by ContentsManager subclasses. We refer to this interface as the
Contents API.

9.1.1 Data Model

Filesystem Entities

ContentsManager methods represent virtual filesystem entities as dictionaries, which we refer to as models.

Models may contain the following entries:

Key Type Info
name unicode Basename of the entity.
path unicode Full (API-style) path to the entity.
type unicode The entity type. One of "notebook", "file" or "directory".
created datetime Creation date of the entity.
last_modified datetime Last modified date of the entity.
content variable The “content” of the entity. (See Below)
mimetype unicode or None The mimetype of content, if any. (See Below)
format unicode or None The format of content, if any. (See Below)

Certain model fields vary in structure depending on the type field of the model. There are three model types:
notebook, file, and directory .

• notebook models

– The format field is always "json".

41

Jupyter Notebook Documentation, Release 5.0.0.dev

– The mimetype field is always None.

– The content field contains a nbformat.notebooknode.NotebookNode representing the
.ipynb file represented by the model. See the NBFormat documentation for a full description.

• file models

– The format field is either "text" or "base64".

– The mimetype field is text/plain for text-format models and
application/octet-stream for base64-format models.

– The content field is always of type unicode. For text-format file models, content simply
contains the file’s bytes after decoding as UTF-8. Non-text (base64) files are read as bytes, base64
encoded, and then decoded as UTF-8.

• directory models

– The format field is always "json".

– The mimetype field is always None.

– The content field contains a list of content-free models representing the entities in the directory.

Note: In certain circumstances, we don’t need the full content of an entity to complete a Contents API request. In
such cases, we omit the mimetype, content, and format keys from the model. This most commonly occurs
when listing a directory, in which circumstance we represent files within the directory as content-less models to avoid
having to recursively traverse and serialize the entire filesystem.

Sample Models

Notebook Model with Content
{

'content': {
'metadata': {},
'nbformat': 4,
'nbformat_minor': 0,
'cells': [

{
'cell_type': 'markdown',
'metadata': {},
'source': 'Some **Markdown**',

},
],

},
'created': datetime(2015, 7, 25, 19, 50, 19, 19865),
'format': 'json',
'last_modified': datetime(2015, 7, 25, 19, 50, 19, 19865),
'mimetype': None,
'name': 'a.ipynb',
'path': 'foo/a.ipynb',
'type': 'notebook',
'writable': True,

}

Notebook Model without Content
{

'content': None,
'created': datetime.datetime(2015, 7, 25, 20, 17, 33, 271931),
'format': None,

42 Chapter 9. Extending the Notebook

http://nbformat.readthedocs.org/en/latest/index.html

Jupyter Notebook Documentation, Release 5.0.0.dev

'last_modified': datetime.datetime(2015, 7, 25, 20, 17, 33, 271931),
'mimetype': None,
'name': 'a.ipynb',
'path': 'foo/a.ipynb',
'type': 'notebook',
'writable': True

}

API Paths

ContentsManager methods represent the locations of filesystem resources as API-style paths. Such paths are in-
terpreted as relative to the root directory of the notebook server. For compatibility across systems, the following
guarantees are made:

• Paths are always unicode, not bytes.

• Paths are not URL-escaped.

• Paths are always forward-slash (/) delimited, even on Windows.

• Leading and trailing slashes are stripped. For example, /foo/bar/buzz/ becomes foo/bar/buzz.

• The empty string ("") represents the root directory.

9.1.2 Writing a Custom ContentsManager

The default ContentsManager is designed for users running the notebook as an application on a personal computer. It
stores notebooks as .ipynb files on the local filesystem, and it maps files and directories in the Notebook UI to files and
directories on disk. It is possible to override how notebooks are stored by implementing your own custom subclass
of ContentsManager. For example, if you deploy the notebook in a context where you don’t trust or don’t have
access to the filesystem of the notebook server, it’s possible to write your own ContentsManager that stores notebooks
and files in a database.

Required Methods

A minimal complete implementation of a custom ContentsManager must implement the following methods:

ContentsManager.get(path[, content, type, ...]) Get a file or directory model.
ContentsManager.save(model, path) Save a file or directory model to path.
ContentsManager.delete_file(path) Delete the file or directory at path.
ContentsManager.rename_file(old_path, new_path) Rename a file or directory.
ContentsManager.file_exists([path]) Does a file exist at the given path?
ContentsManager.dir_exists(path) Does a directory exist at the given path?
ContentsManager.is_hidden(path) Is path a hidden directory or file?

9.1.3 Customizing Checkpoints

TODO:

9.1. Contents API 43

Jupyter Notebook Documentation, Release 5.0.0.dev

9.1.4 Testing

notebook.services.contents.tests includes several test suites written against the abstract Contents API.
This means that an excellent way to test a new ContentsManager subclass is to subclass our tests to make them use
your ContentsManager.

Note: PGContents is an example of a complete implementation of a custom ContentsManager. It stores note-
books and files in PostgreSQL and encodes directories as SQL relations. PGContents also provides an example of
how to re-use the notebook’s tests.

9.2 File save hooks

You can configure functions that are run whenever a file is saved. There are two hooks available:

• ContentsManager.pre_save_hook runs on the API path and model with content. This can be used for
things like stripping output that people don’t like adding to VCS noise.

• FileContentsManager.post_save_hook runs on the filesystem path and model without content. This
could be used to commit changes after every save, for instance.

They are both called with keyword arguments:

pre_save_hook(model=model, path=path, contents_manager=cm)
post_save_hook(model=model, os_path=os_path, contents_manager=cm)

9.2.1 Examples

These can both be added to jupyter_notebook_config.py.

A pre-save hook for stripping output:

def scrub_output_pre_save(model, **kwargs):
"""scrub output before saving notebooks"""
only run on notebooks
if model['type'] != 'notebook':

return
only run on nbformat v4
if model['content']['nbformat'] != 4:

return

for cell in model['content']['cells']:
if cell['cell_type'] != 'code':

continue
cell['outputs'] = []
cell['execution_count'] = None

c.FileContentsManager.pre_save_hook = scrub_output_pre_save

A post-save hook to make a script equivalent whenever the notebook is saved (replacing the --script option in
older versions of the notebook):

import io
import os
from notebook.utils import to_api_path

44 Chapter 9. Extending the Notebook

https://github.com/quantopian/pgcontents
http://www.postgresql.org/

Jupyter Notebook Documentation, Release 5.0.0.dev

_script_exporter = None

def script_post_save(model, os_path, contents_manager, **kwargs):
"""convert notebooks to Python script after save with nbconvert

replaces `ipython notebook --script`
"""
from nbconvert.exporters.script import ScriptExporter

if model['type'] != 'notebook':
return

global _script_exporter
if _script_exporter is None:

_script_exporter = ScriptExporter(parent=contents_manager)
log = contents_manager.log

base, ext = os.path.splitext(os_path)
py_fname = base + '.py'
script, resources = _script_exporter.from_filename(os_path)
script_fname = base + resources.get('output_extension', '.txt')
log.info("Saving script /%s", to_api_path(script_fname, contents_manager.root_dir))
with io.open(script_fname, 'w', encoding='utf-8') as f:

f.write(script)
c.FileContentsManager.post_save_hook = script_post_save

This could be a simple call to jupyter nbconvert --to script, but spawning the subprocess every time is
quite slow.

9.3 Custom request handlers

The notebook webserver can be interacted with using a well defined RESTful API. You can define custom RESTful
API handlers in addition to the ones provided by the notebook. As described below, to define a custom handler you
need to first write a notebook server extension. Then, in the extension, you can register the custom handler.

9.3.1 Writing a notebook server extension

The notebook webserver is written in Python, hence your server extension should be written in Python too.
Server extensions, like IPython extensions, are Python modules that define a specially named load function,
load_jupyter_server_extension. This function is called when the extension is loaded.

def load_jupyter_server_extension(nb_server_app):
"""
Called when the extension is loaded.

Args:
nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance.

"""
pass

To get the notebook server to load your custom extension, you’ll need to add it to the list of extensions to be loaded.
You can do this using the config system. NotebookApp.server_extensions is a config variable which is an
array of strings, each a Python module to be imported. Because this variable is notebook config, you can set it two
different ways, using config files or via the command line.

9.3. Custom request handlers 45

http://petstore.swagger.io/?url=https://raw.githubusercontent.com/jupyter/notebook/master/notebook/services/api/api.yaml

Jupyter Notebook Documentation, Release 5.0.0.dev

For example, to get your extension to load via the command line add a double dash before the variable name, and put
the Python array in double quotes. If your package is “mypackage” and module is “mymodule”, this would look like
jupyter notebook --NotebookApp.server_extensions="[’mypackage.mymodule’]" . Basi-
cally the string should be Python importable.

Alternatively, you can have your extension loaded regardless of the command line args by set-
ting the variable in the Jupyter config file. The default location of the Jupyter config file is
~/.jupyter/profile_default/jupyter_notebook_config.py. Then, inside the config file,
you can use Python to set the variable. For example, the following config does the same as the previous command
line example [1].

c = get_config()
c.NotebookApp.server_extensions = [

'mypackage.mymodule'
]

Before continuing, it’s a good idea to verify that your extension is being loaded. Use a print statement to print
something unique. Launch the notebook server and you should see your statement printed to the console.

9.3.2 Registering custom handlers

Once you’ve defined a server extension, you can register custom handlers because you have a handle to the Notebook
server app instance (nb_server_app above). However, you first need to define your custom handler. To declare
a custom handler, inherit from notebook.base.handlers.IPythonHandler. The example below[1] is a
Hello World handler:

from notebook.base.handlers import IPythonHandler

class HelloWorldHandler(IPythonHandler):
def get(self):

self.finish('Hello, world!')

The Jupyter Notebook server use Tornado as its web framework. For more information on how to implement request
handlers, refer to the Tornado documentation on the matter.

After defining the handler, you need to register the handler with the Notebook server. See the following example:

web_app = nb_server_app.web_app
host_pattern = '.*$'
route_pattern = url_path_join(web_app.settings['base_url'], '/hello')
web_app.add_handlers(host_pattern, [(route_pattern, HelloWorldHandler)])

Putting this together with the extension code, the example looks like the following:

from notebook.utils import url_path_join
from notebook.base.handlers import IPythonHandler

class HelloWorldHandler(IPythonHandler):
def get(self):

self.finish('Hello, world!')

def load_jupyter_server_extension(nb_server_app):
"""
Called when the extension is loaded.

Args:
nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance.

"""

46 Chapter 9. Extending the Notebook

http://www.tornadoweb.org/en/stable/
http://www.tornadoweb.org/en/stable/web.html#request-handlers

Jupyter Notebook Documentation, Release 5.0.0.dev

web_app = nb_server_app.web_app
host_pattern = '.*$'
route_pattern = url_path_join(web_app.settings['base_url'], '/hello')
web_app.add_handlers(host_pattern, [(route_pattern, HelloWorldHandler)])

References: 1. Peter Parente’s Mindtrove

9.4 Custom front-end extensions

This describes the basic steps to write a JavaScript extension for the Jupyter notebook front-end. This allows you to
customize the behaviour of the various pages like the dashboard, the notebook, or the text editor.

9.4.1 The structure of a front-end extension

Note: The notebook front-end and Javascript API are not stable, and are subject to a lot of changes. Any extension
written for the current notebook is almost guaranteed to break in the next release.

A front-end extension is a JavaScript file that defines an AMD module which exposes at least a function called
load_ipython_extension, which takes no arguments. We will not get into the details of what each of these
terms consists of yet, but here is the minimal code needed for a working extension:

// file my_extension/main.js

define(function(){

function load_ipython_extension(){
console.info('this is my first extension');

}

return {
load_ipython_extension: load_ipython_extension

};
});

Note: Although for historical reasons the function is called load_ipython_extension, it does apply to the
Jupyter notebook in general, and will work regardless of the kernel in use.

If you are familiar with JavaScript, you can use this template to require any Jupyter module and modify its configura-
tion, or do anything else in client-side Javascript. Your extension will be loaded at the right time during the notebook
page initialisation for you to set up a listener for the various events that the page can trigger.

You might want access to the current instances of the various Jupyter notebook components on the page, as opposed to
the classes defined in the modules. The current instances are exposed by a module named base/js/namespace.
If you plan on accessing instances on the page, you should require this module rather than accessing the global
variable Jupyter, which will be removed in future. The following example demonstrates how to access the current
notebook instance:

// file my_extension/main.js

define([
'base/js/namespace'

9.4. Custom front-end extensions 47

http://mindtrove.info/4-ways-to-extend-jupyter-notebook/#nb-server-exts
https://en.wikipedia.org/wiki/Asynchronous_module_definition

Jupyter Notebook Documentation, Release 5.0.0.dev

], function(
Jupyter

) {
function load_ipython_extension() {

console.log(
'This is the current notebook application instance:',
Jupyter.notebook

);
}

return {
load_ipython_extension: load_ipython_extension

};
});

9.4.2 Modifying key bindings

One of the abilities of extensions is to modify key bindings, although once again this is an API which is not guaranteed
to be stable. However, custom key bindings are frequently requested, and are helpful to increase accessibility, so in
the following we show how to access them.

Here is an example of an extension that will unbind the shortcut 0,0 in command mode, which normally restarts the
kernel, and bind 0,0,0 in its place:

// file my_extension/main.js

define([
'base/js/namespace'

], function(
Jupyter

) {

function load_ipython_extension() {
Jupyter.keyboard_manager.command_shortcuts.remove_shortcut('0,0');
Jupyter.keyboard_manager.command_shortcuts.add_shortcut('0,0,0', 'jupyter-notebook:restart-kernel');

}

return {
load_ipython_extension: load_ipython_extension

};
});

Note: The standard keybindings might not work correctly on non-US keyboards. Unfortunately, this is a limitation
of browser implementations and the status of keyboard event handling on the web in general. We appreciate your
feedback if you have issues binding keys, or have any ideas to help improve the situation.

You can see that I have used the action name jupyter-notebook:restart-kernel to bind the new shortcut.
There is no API yet to access the list of all available actions, though the following in the JavaScript console of your
browser on a notebook page should give you an idea of what is available:

Object.keys(require('base/js/namespace').actions._actions);

In this example, we changed a keyboard shortcut in command mode; you can also customize keyboard shortcuts in
edit mode. However, most of the keyboard shortcuts in edit mode are handled by CodeMirror, which supports custom
key bindings via a completely different API.

48 Chapter 9. Extending the Notebook

Jupyter Notebook Documentation, Release 5.0.0.dev

9.4.3 Defining and registering your own actions

As part of your front-end extension, you may wish to define actions, which can be attached to toolbar buttons, or called
from the command palette. Here is an example of an extension that defines a (not very useful!) action to show an alert,
and adds a toolabr button using the full action name:

// file my_extension/main.js

define([
'base/js/namespace'

], function(
Jupyter

) {
function load_ipython_extension() {

var handler = function () {
alert('this is an alert from my_extension!');

};

var action = {
icon: 'fa-comment-o', // a font-awesome class used on buttons, etc
help : 'Show an alert',
help_index : 'zz',
handler : handler

};
var prefix = 'my_extension';
var action_name = 'show-alert';

var full_action_name = Jupyter.actions.register(action, name, prefix); // returns 'my_extension:show-alert'
Jupyter.toolbar.add_buttons_group([full_action_name]);

}

return {
load_ipython_extension: load_ipython_extension

};
});

Every action needs a name, which, when joined with its prefix to make the full action name, should be unique. Built-in
actions, like the jupyter-notebook:restart-kernel we bound in the earlier Modifying key bindings exam-
ple, use the prefix jupyter-notebook. For actions defined in an extension, it makes sense to use the extension
name as the prefix. For the action name, the following guidelines should be considered:

• First pick a noun and a verb for the action. For example, if the action is “restart kernel,” the verb is “restart” and
the noun is “kernel”.

• Omit terms like “selected” and “active” by default, so “delete-cell”, rather than “delete-selected-cell”. Only
provide a scope like “-all-” if it is other than the default “selected” or “active” scope.

• If an action has a secondary action, separate the secondary action with “-and-”, so “restart-kernel-and-clear-
output”.

• Use above/below or previous/next to indicate spatial and sequential relationships.

• Don’t ever use before/after as they have a temporal connotation that is confusing when used in a spatial context.

• For dialogs, use a verb that indicates what the dialog will accomplish, such as “confirm-restart-kernel”.

9.4. Custom front-end extensions 49

Jupyter Notebook Documentation, Release 5.0.0.dev

9.4.4 Installing and enabling extensions

You can install your nbextension with the command:

jupyter nbextension install path/to/my_extension/ [--user|--sys-prefix]

The default installation is system-wide. You can use --user to do a per-user installation, or --sys-prefix to
install to Python’s prefix (e.g. in a virtual or conda environment). Where my_extension is the directory containing the
Javascript files. This will copy it to a Jupyter data directory (the exact location is platform dependent - see Data files).

For development, you can use the --symlink flag to symlink your extension rather than copying it, so there’s no
need to reinstall after changes.

To use your extension, you’ll also need to enable it, which tells the notebook interface to load it. You can do that with
another command:

jupyter nbextension enable my_extension/main [--sys-prefix]

The argument refers to the Javascript module containing your load_ipython_extension function, which is
my_extension/main.js in this example. There is a corresponding disable command to stop using an exten-
sion without uninstalling it.

Changed in version 4.2: Added --sys-prefix argument

9.4.5 Kernel Specific extensions

Warning: This feature serves as a stopgap for kernel developers who need specific JavaScript injected onto the
page. The availability and API are subject to change at anytime.

It is possible to load some JavaScript on the page on a per kernel basis. Be aware that doing so will make the browser
page reload without warning as soon as the user switches the kernel without notice.

If you, a kernel developer, need a particular piece of JavaScript to be loaded on a “per kernel” basis, such as:

• if you are developing a CodeMirror mode for your language

• if you need to enable some specific debugging options

your kernelspecs are allowed to contain a kernel.js file that defines an AMD module. The AMD module
should define an onload function that will be called when the kernelspec loads, such as:

• when you load a notebook that uses your kernelspec

• change the active kernelspec of a notebook to your kernelspec.

Note that adding a kernel.js to your kernelspec will add an unexpected side effect to changing a kernel in the notebook.
As it is impossible to “unload” JavaScript, any attempt to change the kernelspec again will save the current notebook
and reload the page without confirmations.

Here is an example of kernel.js:

.. code:: javascript

// kernel.js

define(function(){

return {onload: function(){ console.info(‘Kernel specific javascript loaded’); // do more things
here, like define a codemirror mode,

}}

50 Chapter 9. Extending the Notebook

http://jupyter.readthedocs.org/en/latest/projects/jupyter-directories.html#jupyter-path

Jupyter Notebook Documentation, Release 5.0.0.dev

});

9.5 Customize keymaps

Note: Declarative Custom Keymaps is a provisional feature with unstable API which is not guaranteed to be kept in
future versions of the notebook, and can be removed or changed without warnings.

The notebook shortcuts that are defined by jupyter both in edit mode an command mode are configurable in the
frontend configuration file ~/.jupyter/nbconfig/notebook.json. The modification of Keyboard shortcut
suffer of several limitations, mainly that your Browser and OS might prevent certain shortcut to work correctly. If this
is the case, there are unfortunately not much than can be done. The second issue can arise with keyboard that have a
layout different than US English. Again even if we are aware of the issue, there is not much we can do about that.

Shortcut are also limited by the underlying library that handle code and text edition: CodeMirror. If some Keyboard
shortcuts are conflicting, the method describe below might not work to create new keyboard shortcuts, especially in
the edit mode of the notebook.

The 4 sections of interest in ~/.jupyter/nbconfig/notebook.json are the following:

• keys.command.unbind

• keys.edit.unbind

• keys.command.bind

• keys.edit.bind

The first two section describe which default keyboard shortcut not to register at notebook startup time. These are
mostly useful if you need to unbind a default keyboard shortcut before binding it to a new command.

These two first sections apply respectively to the command and edit mode of the notebook. They take a list of
shortcut to unbind.

For example, to unbind the shortcut to split a cell at the position of the cursor (Ctrl-Shift-Minus)use the follow-
ing:

// file ~/.jupyter/nbconfig/notebook.json

{
"keys": {
"edit": {

"unbind": [
"Ctrl-Shift-Minus"

]
},

},
}

The last two section describe which new keyboard shortcut to register at notebook startup time, and which actions they
trigger.

These two last sections apply respectively to the command and edit mode of the notebook. They take a dictionary
with shortcuts as keys and commands name as value.

For example, to bind the shortcut G,G,G (Press G three time in a row) in command mode, to the command that restart
the kernel and run all cells, use the following:

9.5. Customize keymaps 51

Jupyter Notebook Documentation, Release 5.0.0.dev

// file ~/.jupyter/nbconfig/notebook.json

{
"keys": {
"command": {

"bind": {
"G,G,G":"jupyter-notebook:restart-kernel-and-run-all-cells"

}
}

},
}

The name of the available commands can be find by hovering the right end of a row in the command palette.

9.6 Custom bundler extensions

The notebook server supports the writing of bundler extensions that transform, package, and download/deploy note-
book files. As a developer, you need only write a single Python function to implement a bundler. The notebook server
automatically generates a File -> Download as or File -> Deploy as menu item in the notebook front-end to trigger
your bundler.

Here are some examples of what you can implement using bundler extensions:

• Convert a notebook file to a HTML document and publish it as a post on a blog site

• Create a snapshot of the current notebook environment and bundle that definition plus notebook into a zip
download

• Deploy a notebook as a standalone, interactive dashboard

To implement a bundler extension, you must do all of the following:

• Declare bundler extension metadata in your Python package

• Write a bundle function that responds to bundle requests

• Instruct your users on how to enable/disable your bundler extension

The following sections describe these steps in detail.

9.6.1 Declaring bundler metadata

You must provide information about the bundler extension(s) your package provides by implementing a
_jupyter_bundlerextensions_paths function. This function can reside anywhere in your package so long as it can
be imported when enabling the bundler extension. (See Enabling/disabling bundler extensions.)

in mypackage.hello_bundler

def _jupyter_bundlerextension_paths():
"""Example "hello world" bundler extension"""
return [{

'name': 'hello_bundler', # unique bundler name
'label': 'Hello Bundler', # human-redable menu item label
'module_name': 'mypackage.hello_bundler', # module containing bundle()
'group': 'deploy' # group under 'deploy' or 'download' menu

}]

52 Chapter 9. Extending the Notebook

https://github.com/jupyter-incubator/dashboards_bundlers

Jupyter Notebook Documentation, Release 5.0.0.dev

Note that the return value is a list. By returning multiple dictionaries in the list, you allow users to enable/disable sets
of bundlers all at once.

9.6.2 Writing the bundle function

At runtime, a menu item with the given label appears either in the File -> Deploy as or File -> Download as menu
depending on the group value in your metadata. When a user clicks the menu item, a new browser tab opens and
notebook server invokes a bundle function in the module_name specified in the metadata.

You must implement a bundle function that matches the signature of the following example:

in mypackage.hello_bundler

def bundle(handler, model):
"""Transform, convert, bundle, etc. the notebook referenced by the given
model.

Then issue a Tornado web response using the `handler` to redirect
the user's browser, download a file, show a HTML page, etc. This function
must finish the handler response before returning either explicitly or by
raising an exception.

Parameters

handler : tornado.web.RequestHandler

Handler that serviced the bundle request
model : dict

Notebook model from the configured ContentManager
"""
handler.finish('I bundled {}!'.format(model['path']))

Your bundle function is free to do whatever it wants with the request and respond in any manner. For example, it may
read additional query parameters from the request, issue a redirect to another site, run a local process (e.g., nbconvert),
make a HTTP request to another service, etc.

The caller of the bundle function is @tornado.gen.coroutine decorated and wraps its call with
torando.gen.maybe_future. This behavior means you may handle the web request synchronously, as in the
example above, or asynchronously using @tornado.gen.coroutine and yield, as in the example below.

from tornado import gen

@gen.coroutine
def bundle(handler, model):
simulate a long running IO op (e.g., deploying to a remote host)
yield gen.sleep(10)

now respond
handler.finish('I spent 10 seconds bundling {}!'.format(model['path']))

You should prefer the second, asynchronous approach when your bundle operation is long-running and would other-
wise block the notebook server main loop if handled synchronously.

For more details about the data flow from menu item click to bundle function invocation, see Bundler invocation
details.

9.6. Custom bundler extensions 53

Jupyter Notebook Documentation, Release 5.0.0.dev

9.6.3 Enabling/disabling bundler extensions

The notebook server includes a command line interface (CLI) for enabling and disabling bundler extensions.

You should document the basic commands for enabling and disabling your bundler. One possible command for
enabling the hello_bundler example is the following:

jupyter bundlerextension enable --py mypackage.hello_bundler --sys-prefix

The above updates the notebook configuration file in the current conda/virtualenv environment (–sys-prefix) with the
metadata returned by the mypackage.hellow_bundler._jupyter_bundlerextension_paths function.

The corresponding command to later disable the bundler extension is the following:

jupyter bundlerextension disable --py mypackage.hello_bundler --sys-prefix

For more help using the bundlerextension subcommand, run the following.

jupyter bundlerextension --help

The output describes options for listing enabled bundlers, configuring bundlers for single users, configuring bundlers
system-wide, etc.

9.6.4 Example: IPython Notebook bundle (.zip)

The hello_bundler example in this documentation is simplisitic in the name of brevity. For more meaningful examples,
see notebook/bundler/zip_bundler.py and notebook/bundler/tarball_bundler.py. You can enable them to try them like
so:

jupyter bundlerextension enable --py notebook.bundler.zip_bundler --sys-prefix
jupyter bundlerextension enable --py notebook.bundler.tarball_bundler --sys-prefix

9.6.5 Bundler invocation details

Support for bundler extensions comes from Python modules in notebook/bundler and JavaScript in note-
book/static/notebook/js/menubar.js. The flow of data between the various components proceeds roughly as follows:

1. User opens a notebook document

2. Notebook front-end JavaScript loads notebook configuration

3. Bundler front-end JS creates menu items for all bundler extensions in the config

4. User clicks a bundler menu item

5. JS click handler opens a new browser window/tab to <notebook base_url>/bundle/<path/to/notebook>?bundler=<name>
(i.e., a HTTP GET request)

6. Bundle handler validates the notebook path and bundler name

7. Bundle handler delegates the request to the bundle function in the bundler’s module_name

8. bundle function finishes the HTTP request

54 Chapter 9. Extending the Notebook

CHAPTER 10

Contributing to the Jupyter Notebook

If you’re reading this section, you’re probably interested in contributing to Jupyter. Welcome and thanks for your
interest in contributing!

Please take a look at the Contributor documentation, familiarize yourself with using the Jupyter Notebook, and intro-
duce yourself on the mailing list and share what area of the project you are interested in working on.

10.1 General Guidelines

For general documentation about contributing to Jupyter projects, see the Project Jupyter Contributor Documentation.

10.2 Setting Up a Development Environment

10.2.1 Installing Node.js and npm

Building the Notebook from its GitHub source code requires some tools to create and minify JavaScript components
and the CSS. Namely, that’s Node.js and Node’s package manager, npm.

If you use conda, you can get them with:

conda install -c javascript nodejs

If you use Homebrew on Mac OS X:

brew install node

For Debian/Ubuntu systems, you should use the nodejs-legacy package instead of the node package:

sudo apt-get update
sudo apt-get install nodejs-legacy npm

You can also use the installer from the Node.js website.

10.2.2 Installing the Jupyter Notebook

Once you have installed the dependencies mentioned above, use the following steps:

55

http://jupyter.readthedocs.io/en/latest/contributor/content-contributor.html
http://brew.sh/
https://nodejs.org

Jupyter Notebook Documentation, Release 5.0.0.dev

pip install setuptools pip --upgrade --user
git clone https://github.com/jupyter/notebook
cd notebook
pip install -e . --user

If you want the development environment to be available for all users of your system (assuming you have the necessary
rights) or if you are installing in a virtual environment, just drop the --user option.

Once you have done this, you can launch the master branch of Jupyter notebook from any directory in your system
with:

jupyter notebook

10.2.3 Rebuilding JavaScript and CSS

There is a build step for the JavaScript and CSS in the notebook. To make sure that you are working with up-to-date
code, you will need to run this command whenever there are changes to JavaScript or LESS sources:

python setup.py js css

Prototyping Tip

When doing prototyping which needs quick iteration of the Notebook’s JavaScript, run this in the root of the repository:

npm run build:watch

This will cause WebPack to monitor the files you edit and recompile them on the fly.

Git Hooks

If you want to automatically update dependencies, recompile the JavaScript, and recompile the CSS after checking out
a new commit, you can install post-checkout and post-merge hooks which will do it for you:

git-hooks/install-hooks.sh

See git-hooks/README.md for more details.

10.3 Running Tests

10.3.1 Python Tests

Install dependencies:

pip install -e .[test] --user

To run the Python tests, use:

nosetests

If you want coverage statistics as well, you can run:

nosetests --with-coverage --cover-package=notebook notebook

56 Chapter 10. Contributing to the Jupyter Notebook

Jupyter Notebook Documentation, Release 5.0.0.dev

10.3.2 JavaScript Tests

To run the JavaScript tests, you will need to have PhantomJS and CasperJS installed:

npm install -g casperjs phantomjs@1.9.18

Then, to run the JavaScript tests:

python -m notebook.jstest [group]

where [group] is an optional argument that is a path relative to notebook/tests/. For example, to run all tests
in notebook/tests/notebook:

python -m notebook.jstest notebook

or to run just notebook/tests/notebook/deletecell.js:

python -m notebook.jstest notebook/deletecell.js

10.4 Building the Documentation

To build the documentation you’ll need Sphinx, pandoc and a few other packages.

To install (and activate) a conda environment named notebook_docs containing all the necessary packages (except
pandoc), use:

conda env create -f docs/environment.yml
source activate notebook_docs # Linux and OS X
activate notebook_docs # Windows

If you want to install the necessary packages with pip instead, use (omitting –user if working in a virtual environ-
ment):

pip install -r docs/doc-requirements.txt --user

Once you have installed the required packages, you can build the docs with:

cd docs
make html

After that, the generated HTML files will be available at build/html/index.html. You may view the docs in
your browser.

You can automatically check if all hyperlinks are still valid:

make linkcheck

Windows users can find make.bat in the docs folder.

You should also have a look at the Project Jupyter Documentation Guide.

10.4. Building the Documentation 57

http://www.sphinx-doc.org/
http://pandoc.org/
http://conda.pydata.org/docs/using/envs.html#use-environment-from-file
https://jupyter.readthedocs.io/en/latest/contrib_docs/index.html

Jupyter Notebook Documentation, Release 5.0.0.dev

58 Chapter 10. Contributing to the Jupyter Notebook

CHAPTER 11

Making a Notebook release

This document guides a contributor through creating a release of the Jupyter notebook.

11.1 Check installed tools

Review CONTRIBUTING.rst. Make sure all the tools needed to generate the minified JavaScript and CSS files are
properly installed.

11.2 Clean the repository

You can remove all non-tracked files with:

git clean -xfdi

This would ask you for confirmation before removing all untracked files. Make sure the dist/ folder is clean and
avoid stale build from previous attempts.

11.3 Create the release

1. Update version number in notebook/_version.py.

2. Run this command:

python setup.py jsversion

It will modify (at least) notebook/static/base/js/namespace.js which makes the notebook ver-
sion available from within JavaScript.

3. Commit and tag the release with the current version number:

git commit -am "release $VERSION"
git tag $VERSION

4. You are now ready to build the sdist and wheel:

python setup.py sdist
python setup.py bdist_wheel

59

Jupyter Notebook Documentation, Release 5.0.0.dev

5. You can now test the wheel and the sdist locally before uploading to PyPI. Make sure to use twine to upload
the archives over SSL.

twine upload dist/*

6. If all went well, change the notebook/_version.py back adding the .dev suffix.

7. Push directly on master, not forgetting to push --tags too.

60 Chapter 11. Making a Notebook release

https://github.com/pypa/twine

CHAPTER 12

Developer FAQ

1. How do I install a prerelease version such as a beta or release candidate?

python -m pip install notebook --pre --upgrade

View the original notebooks on nbviewer

61

http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/

Jupyter Notebook Documentation, Release 5.0.0.dev

62 Chapter 12. Developer FAQ

CHAPTER 13

Examples

The following notebooks have been rendered for your convenience.

13.1 What is the Jupyter Notebook?

13.1.1 Introduction

The Jupyter Notebook is an interactive computing environment that enables users to author notebook documents
that include: - Live code - Interactive widgets - Plots - Narrative text - Equations - Images - Video

These documents provide a complete and self-contained record of a computation that can be converted to
various formats and shared with others using email, Dropbox, version control systems (like git/GitHub) or
nbviewer.jupyter.org.

Components

The Jupyter Notebook combines three components:

• The notebook web application: An interactive web application for writing and running code interactively and
authoring notebook documents.

• Kernels: Separate processes started by the notebook web application that runs users’ code in a given language
and returns output back to the notebook web application. The kernel also handles things like computations for
interactive widgets, tab completion and introspection.

• Notebook documents: Self-contained documents that contain a representation of all content visible in the
notebook web application, including inputs and outputs of the computations, narrative text, equations, images,
and rich media representations of objects. Each notebook document has its own kernel.

13.1.2 Notebook web application

The notebook web application enables users to:

• Edit code in the browser, with automatic syntax highlighting, indentation, and tab completion/introspection.

• Run code from the browser, with the results of computations attached to the code which generated them.

• See the results of computations with rich media representations, such as HTML, LaTeX, PNG, SVG, PDF,
etc.

63

http://dropbox.com
http://github.com
http://nbviewer.jupyter.org

Jupyter Notebook Documentation, Release 5.0.0.dev

• Create and use interactive JavaScript widgets, which bind interactive user interface controls and visualizations
to reactive kernel side computations.

• Author narrative text using the Markdown markup language.

• Build hierarchical documents that are organized into sections with different levels of headings.

• Include mathematical equations using LaTeX syntax in Markdown, which are rendered in-browser by Math-
Jax.

13.1.3 Kernels

Through Jupyter’s kernel and messaging architecture, the Notebook allows code to be run in a range of different
programming languages. For each notebook document that a user opens, the web application starts a kernel that runs
the code for that notebook. Each kernel is capable of running code in a single programming language and there are
kernels available in the following languages:

• Python(https://github.com/ipython/ipython)

• Julia (https://github.com/JuliaLang/IJulia.jl)

• R (https://github.com/takluyver/IRkernel)

• Ruby (https://github.com/minrk/iruby)

• Haskell (https://github.com/gibiansky/IHaskell)

• Scala (https://github.com/Bridgewater/scala-notebook)

• node.js (https://gist.github.com/Carreau/4279371)

• Go (https://github.com/takluyver/igo)

The default kernel runs Python code. The notebook provides a simple way for users to pick which of these kernels is
used for a given notebook.

Each of these kernels communicate with the notebook web application and web browser using a JSON over Ze-
roMQ/WebSockets message protocol that is described here. Most users don’t need to know about these details, but it
helps to understand that “kernels run code.”

13.1.4 Notebook documents

Notebook documents contain the inputs and outputs of an interactive session as well as narrative text that accompa-
nies the code but is not meant for execution. Rich output generated by running code, including HTML, images, video,
and plots, is embeddeed in the notebook, which makes it a complete and self-contained record of a computation.

When you run the notebook web application on your computer, notebook documents are just files on your local
filesystem with a ‘‘.ipynb‘‘ extension. This allows you to use familiar workflows for organizing your notebooks into
folders and sharing them with others.

Notebooks consist of a linear sequence of cells. There are four basic cell types:

• Code cells: Input and output of live code that is run in the kernel

• Markdown cells: Narrative text with embedded LaTeX equations

• Heading cells: 6 levels of hierarchical organization and formatting

• Raw cells: Unformatted text that is included, without modification, when notebooks are converted to different
formats using nbconvert

64 Chapter 13. Examples

https://daringfireball.net/projects/markdown/
http://www.mathjax.org/
http://www.mathjax.org/
https://github.com/ipython/ipython
https://github.com/JuliaLang/IJulia.jl
https://github.com/takluyver/IRkernel
https://github.com/minrk/iruby
https://github.com/gibiansky/IHaskell
https://github.com/Bridgewater/scala-notebook
https://gist.github.com/Carreau/4279371
https://github.com/takluyver/igo
http://ipython.org/ipython-doc/dev/development/messaging.html

Jupyter Notebook Documentation, Release 5.0.0.dev

Internally, notebook documents are ‘JSON <http://en.wikipedia.org/wiki/JSON>‘__ data with binary values
‘base64 <http://en.wikipedia.org/wiki/Base64>‘__ encoded. This allows them to be read and manipulated pro-
grammatically by any programming language. Because JSON is a text format, notebook documents are version
control friendly.

Notebooks can be exported to different static formats including HTML, reStructeredText, LaTeX, PDF, and slide
shows (reveal.js) using Jupyter’s nbconvert utility.

Furthermore, any notebook document available from a public URL on or GitHub can be shared via nbviewer. This
service loads the notebook document from the URL and renders it as a static web page. The resulting web page may
thus be shared with others without their needing to install the Jupyter Notebook.

13.2 Notebook Basics

13.2.1 The Notebook dashboard

When you first start the notebook server, your browser will open to the notebook dashboard. The dashboard serves
as a home page for the notebook. Its main purpose is to display the notebooks and files in the current directory. For
example, here is a screenshot of the dashboard page for the examples directory in the Jupyter repository:

The top of the notebook list displays clickable breadcrumbs of the current directory. By clicking on these breadcrumbs
or on sub-directories in the notebook list, you can navigate your file system.

To create a new notebook, click on the “New” button at the top of the list and select a kernel from the dropdown (as
seen below). Which kernels are listed depend on what’s installed on the server. Some of the kernels in the screenshot
below may not exist as an option to you.

Notebooks and files can be uploaded to the current directory by dragging a notebook file onto the notebook list or by
the “click here” text above the list.

The notebook list shows green “Running” text and a green notebook icon next to running notebooks (as seen below).
Notebooks remain running until you explicitly shut them down; closing the notebook’s page is not sufficient.

To shutdown, delete, duplicate, or rename a notebook check the checkbox next to it and an array of controls will appear
at the top of the notebook list (as seen below). You can also use the same operations on directories and files when
applicable.

To see all of your running notebooks along with their directories, click on the “Running” tab:

This view provides a convenient way to track notebooks that you start as you navigate the file system in a long running
notebook server.

13.2.2 Overview of the Notebook UI

If you create a new notebook or open an existing one, you will be taken to the notebook user interface (UI). This UI
allows you to run code and author notebook documents interactively. The notebook UI has the following main areas:

• Menu

• Toolbar

• Notebook area and cells

The notebook has an interactive tour of these elements that can be started in the “Help:User Interface Tour” menu
item.

13.2. Notebook Basics 65

http://lab.hakim.se/reveal-js/#/
http://nbviewer.ipython.org

Jupyter Notebook Documentation, Release 5.0.0.dev

13.2.3 Modal editor

Starting with IPython 2.0, the Jupyter Notebook has a modal user interface. This means that the keyboard does
different things depending on which mode the Notebook is in. There are two modes: edit mode and command mode.

Edit mode

Edit mode is indicated by a green cell border and a prompt showing in the editor area:

When a cell is in edit mode, you can type into the cell, like a normal text editor.

Enter edit mode by pressing Enter or using the mouse to click on a cell’s editor area.

Command mode

Command mode is indicated by a grey cell border with a blue left margin:

When you are in command mode, you are able to edit the notebook as a whole, but not type into individual cells. Most
importantly, in command mode, the keyboard is mapped to a set of shortcuts that let you perform notebook and cell
actions efficiently. For example, if you are in command mode and you press c, you will copy the current cell - no
modifier is needed.

Don’t try to type into a cell in command mode; unexpected things will happen!

Enter command mode by pressing Esc or using the mouse to click outside a cell’s editor area.

13.2.4 Mouse navigation

All navigation and actions in the Notebook are available using the mouse through the menubar and toolbar, which are
both above the main Notebook area:

The first idea of mouse based navigation is that cells can be selected by clicking on them. The currently selected
cell gets a grey or green border depending on whether the notebook is in edit or command mode. If you click inside a
cell’s editor area, you will enter edit mode. If you click on the prompt or output area of a cell you will enter command
mode.

If you are running this notebook in a live session (not on http://nbviewer.jupyter.org) try selecting different cells and
going between edit and command mode. Try typing into a cell.

The second idea of mouse based navigation is that cell actions usually apply to the currently selected cell. Thus if
you want to run the code in a cell, you would select it and click the

button in the toolbar or the “Cell:Run” menu item. Similarly, to copy a cell you would select it and click the

button in the toolbar or the “Edit:Copy” menu item. With this simple pattern, you should be able to do most everything
you need with the mouse.

Markdown and heading cells have one other state that can be modified with the mouse. These cells can either be
rendered or unrendered. When they are rendered, you will see a nice formatted representation of the cell’s contents.
When they are unrendered, you will see the raw text source of the cell. To render the selected cell with the mouse,
click the

button in the toolbar or the “Cell:Run” menu item. To unrender the selected cell, double click on the cell.

66 Chapter 13. Examples

http://nbviewer.jupyter.org

Jupyter Notebook Documentation, Release 5.0.0.dev

13.2.5 Keyboard Navigation

The modal user interface of the Jupyter Notebook has been optimized for efficient keyboard usage. This is made
possible by having two different sets of keyboard shortcuts: one set that is active in edit mode and another in command
mode.

The most important keyboard shortcuts are Enter, which enters edit mode, and Esc, which enters command mode.

In edit mode, most of the keyboard is dedicated to typing into the cell’s editor. Thus, in edit mode there are relatively
few shortcuts. In command mode, the entire keyboard is available for shortcuts, so there are many more. The Help-
>‘‘Keyboard Shortcuts‘‘ dialog lists the available shortcuts.

We recommend learning the command mode shortcuts in the following rough order:

1. Basic navigation: enter, shift-enter, up/k, down/j

2. Saving the notebook: s

3. Change Cell types: y, m, 1-6, t

4. Cell creation: a, b

5. Cell editing: x, c, v, d, z

6. Kernel operations: i, 0 (press twice)

13.3 Running Code

First and foremost, the Jupyter Notebook is an interactive environment for writing and running code. The notebook
is capable of running code in a wide range of languages. However, each notebook is associated with a single kernel.
This notebook is associated with the IPython kernel, therefor runs Python code.

13.3.1 Code cells allow you to enter and run code

Run a code cell using Shift-Enter or pressing the

button in the toolbar above:

In [2]: a = 10

In [3]: print(a)

10

There are two other keyboard shortcuts for running code:

• Alt-Enter runs the current cell and inserts a new one below.

• Ctrl-Enter run the current cell and enters command mode.

13.3.2 Managing the Kernel

Code is run in a separate process called the Kernel. The Kernel can be interrupted or restarted. Try running the
following cell and then hit the

button in the toolbar above.

In [4]: import time
time.sleep(10)

13.3. Running Code 67

Jupyter Notebook Documentation, Release 5.0.0.dev

If the Kernel dies you will be prompted to restart it. Here we call the low-level system libc.time routine with the wrong
argument via ctypes to segfault the Python interpreter:

In [5]: import sys
from ctypes import CDLL
This will crash a Linux or Mac system
equivalent calls can be made on Windows

Uncomment these lines if you would like to see the segfault

dll = 'dylib' if sys.platform == 'darwin' else 'so.6'
libc = CDLL("libc.%s" % dll)
libc.time(-1) # BOOM!!

13.3.3 Cell menu

The “Cell” menu has a number of menu items for running code in different ways. These includes:

• Run and Select Below

• Run and Insert Below

• Run All

• Run All Above

• Run All Below

13.3.4 Restarting the kernels

The kernel maintains the state of a notebook’s computations. You can reset this state by restarting the kernel. This is
done by clicking on the

in the toolbar above.

13.3.5 sys.stdout and sys.stderr

The stdout and stderr streams are displayed as text in the output area.

In [6]: print("hi, stdout")

hi, stdout

In [7]: from __future__ import print_function
print('hi, stderr', file=sys.stderr)

hi, stderr

13.3.6 Output is asynchronous

All output is displayed asynchronously as it is generated in the Kernel. If you execute the next cell, you will see the
output one piece at a time, not all at the end.

In [8]: import time, sys
for i in range(8):

print(i)
time.sleep(0.5)

68 Chapter 13. Examples

Jupyter Notebook Documentation, Release 5.0.0.dev

0
1
2
3
4
5
6
7

13.3.7 Large outputs

To better handle large outputs, the output area can be collapsed. Run the following cell and then single- or double-
click on the active area to the left of the output:

In [9]: for i in range(50):
print(i)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

13.3. Running Code 69

Jupyter Notebook Documentation, Release 5.0.0.dev

37
38
39
40
41
42
43
44
45
46
47
48
49

Beyond a certain point, output will scroll automatically:

In [10]: for i in range(500):
print(2**i - 1)

0
1
3
7
15
31
63
127
255
511
1023
2047
4095
8191
16383
32767
65535
131071
262143
524287
1048575
2097151
4194303
8388607
16777215
33554431
67108863
134217727
268435455
536870911
1073741823
2147483647
4294967295
8589934591
17179869183
34359738367

70 Chapter 13. Examples

Jupyter Notebook Documentation, Release 5.0.0.dev

68719476735
137438953471
274877906943
549755813887
1099511627775
2199023255551
4398046511103
8796093022207
17592186044415
35184372088831
70368744177663
140737488355327
281474976710655
562949953421311
1125899906842623
2251799813685247
4503599627370495
9007199254740991
18014398509481983
36028797018963967
72057594037927935
144115188075855871
288230376151711743
576460752303423487
1152921504606846975
2305843009213693951
4611686018427387903
9223372036854775807
18446744073709551615
36893488147419103231
73786976294838206463
147573952589676412927
295147905179352825855
590295810358705651711
1180591620717411303423
2361183241434822606847
4722366482869645213695
9444732965739290427391
18889465931478580854783
37778931862957161709567
75557863725914323419135
151115727451828646838271
302231454903657293676543
604462909807314587353087
1208925819614629174706175
2417851639229258349412351
4835703278458516698824703
9671406556917033397649407
19342813113834066795298815
38685626227668133590597631
77371252455336267181195263
154742504910672534362390527
309485009821345068724781055
618970019642690137449562111

13.3. Running Code 71

Jupyter Notebook Documentation, Release 5.0.0.dev

1237940039285380274899124223
2475880078570760549798248447
4951760157141521099596496895
9903520314283042199192993791
19807040628566084398385987583
39614081257132168796771975167
79228162514264337593543950335
158456325028528675187087900671
316912650057057350374175801343
633825300114114700748351602687
1267650600228229401496703205375
2535301200456458802993406410751
5070602400912917605986812821503
10141204801825835211973625643007
20282409603651670423947251286015
40564819207303340847894502572031
81129638414606681695789005144063
162259276829213363391578010288127
324518553658426726783156020576255
649037107316853453566312041152511
1298074214633706907132624082305023
2596148429267413814265248164610047
5192296858534827628530496329220095
10384593717069655257060992658440191
20769187434139310514121985316880383
41538374868278621028243970633760767
83076749736557242056487941267521535
166153499473114484112975882535043071
332306998946228968225951765070086143
664613997892457936451903530140172287
1329227995784915872903807060280344575
2658455991569831745807614120560689151
5316911983139663491615228241121378303
10633823966279326983230456482242756607
21267647932558653966460912964485513215
42535295865117307932921825928971026431
85070591730234615865843651857942052863
170141183460469231731687303715884105727
340282366920938463463374607431768211455
680564733841876926926749214863536422911
1361129467683753853853498429727072845823
2722258935367507707706996859454145691647
5444517870735015415413993718908291383295
10889035741470030830827987437816582766591
21778071482940061661655974875633165533183
43556142965880123323311949751266331066367
87112285931760246646623899502532662132735
174224571863520493293247799005065324265471
348449143727040986586495598010130648530943
696898287454081973172991196020261297061887
1393796574908163946345982392040522594123775
2787593149816327892691964784081045188247551
5575186299632655785383929568162090376495103
11150372599265311570767859136324180752990207

72 Chapter 13. Examples

Jupyter Notebook Documentation, Release 5.0.0.dev

22300745198530623141535718272648361505980415
44601490397061246283071436545296723011960831
89202980794122492566142873090593446023921663
178405961588244985132285746181186892047843327
356811923176489970264571492362373784095686655
713623846352979940529142984724747568191373311
1427247692705959881058285969449495136382746623
2854495385411919762116571938898990272765493247
5708990770823839524233143877797980545530986495
11417981541647679048466287755595961091061972991
22835963083295358096932575511191922182123945983
45671926166590716193865151022383844364247891967
91343852333181432387730302044767688728495783935
182687704666362864775460604089535377456991567871
365375409332725729550921208179070754913983135743
730750818665451459101842416358141509827966271487
1461501637330902918203684832716283019655932542975
2923003274661805836407369665432566039311865085951
5846006549323611672814739330865132078623730171903
11692013098647223345629478661730264157247460343807
23384026197294446691258957323460528314494920687615
46768052394588893382517914646921056628989841375231
93536104789177786765035829293842113257979682750463
187072209578355573530071658587684226515959365500927
374144419156711147060143317175368453031918731001855
748288838313422294120286634350736906063837462003711
1496577676626844588240573268701473812127674924007423
2993155353253689176481146537402947624255349848014847
5986310706507378352962293074805895248510699696029695
11972621413014756705924586149611790497021399392059391
23945242826029513411849172299223580994042798784118783
47890485652059026823698344598447161988085597568237567
95780971304118053647396689196894323976171195136475135
191561942608236107294793378393788647952342390272950271
383123885216472214589586756787577295904684780545900543
766247770432944429179173513575154591809369561091801087
1532495540865888858358347027150309183618739122183602175
3064991081731777716716694054300618367237478244367204351
6129982163463555433433388108601236734474956488734408703
12259964326927110866866776217202473468949912977468817407
24519928653854221733733552434404946937899825954937634815
49039857307708443467467104868809893875799651909875269631
98079714615416886934934209737619787751599303819750539263
196159429230833773869868419475239575503198607639501078527
392318858461667547739736838950479151006397215279002157055
784637716923335095479473677900958302012794430558004314111
1569275433846670190958947355801916604025588861116008628223
3138550867693340381917894711603833208051177722232017256447
6277101735386680763835789423207666416102355444464034512895
12554203470773361527671578846415332832204710888928069025791
25108406941546723055343157692830665664409421777856138051583
50216813883093446110686315385661331328818843555712276103167
100433627766186892221372630771322662657637687111424552206335
200867255532373784442745261542645325315275374222849104412671

13.3. Running Code 73

Jupyter Notebook Documentation, Release 5.0.0.dev

401734511064747568885490523085290650630550748445698208825343
803469022129495137770981046170581301261101496891396417650687
1606938044258990275541962092341162602522202993782792835301375
3213876088517980551083924184682325205044405987565585670602751
6427752177035961102167848369364650410088811975131171341205503
12855504354071922204335696738729300820177623950262342682411007
25711008708143844408671393477458601640355247900524685364822015
51422017416287688817342786954917203280710495801049370729644031
102844034832575377634685573909834406561420991602098741459288063
205688069665150755269371147819668813122841983204197482918576127
411376139330301510538742295639337626245683966408394965837152255
822752278660603021077484591278675252491367932816789931674304511
1645504557321206042154969182557350504982735865633579863348609023
3291009114642412084309938365114701009965471731267159726697218047
6582018229284824168619876730229402019930943462534319453394436095
13164036458569648337239753460458804039861886925068638906788872191
26328072917139296674479506920917608079723773850137277813577744383
52656145834278593348959013841835216159447547700274555627155488767
105312291668557186697918027683670432318895095400549111254310977535
210624583337114373395836055367340864637790190801098222508621955071
421249166674228746791672110734681729275580381602196445017243910143
842498333348457493583344221469363458551160763204392890034487820287
1684996666696914987166688442938726917102321526408785780068975640575
3369993333393829974333376885877453834204643052817571560137951281151
6739986666787659948666753771754907668409286105635143120275902562303
13479973333575319897333507543509815336818572211270286240551805124607
26959946667150639794667015087019630673637144422540572481103610249215
53919893334301279589334030174039261347274288845081144962207220498431
107839786668602559178668060348078522694548577690162289924414440996863
215679573337205118357336120696157045389097155380324579848828881993727
431359146674410236714672241392314090778194310760649159697657763987455
862718293348820473429344482784628181556388621521298319395315527974911
1725436586697640946858688965569256363112777243042596638790631055949823
3450873173395281893717377931138512726225554486085193277581262111899647
6901746346790563787434755862277025452451108972170386555162524223799295
13803492693581127574869511724554050904902217944340773110325048447598591
27606985387162255149739023449108101809804435888681546220650096895197183
55213970774324510299478046898216203619608871777363092441300193790394367
110427941548649020598956093796432407239217743554726184882600387580788735
220855883097298041197912187592864814478435487109452369765200775161577471
441711766194596082395824375185729628956870974218904739530401550323154943
883423532389192164791648750371459257913741948437809479060803100646309887
1766847064778384329583297500742918515827483896875618958121606201292619775
3533694129556768659166595001485837031654967793751237916243212402585239551
7067388259113537318333190002971674063309935587502475832486424805170479103
14134776518227074636666380005943348126619871175004951664972849610340958207
28269553036454149273332760011886696253239742350009903329945699220681916415
56539106072908298546665520023773392506479484700019806659891398441363832831
113078212145816597093331040047546785012958969400039613319782796882727665663
226156424291633194186662080095093570025917938800079226639565593765455331327
452312848583266388373324160190187140051835877600158453279131187530910662655
904625697166532776746648320380374280103671755200316906558262375061821325311
1809251394333065553493296640760748560207343510400633813116524750123642650623
3618502788666131106986593281521497120414687020801267626233049500247285301247

74 Chapter 13. Examples

Jupyter Notebook Documentation, Release 5.0.0.dev

7237005577332262213973186563042994240829374041602535252466099000494570602495
14474011154664524427946373126085988481658748083205070504932198000989141204991
28948022309329048855892746252171976963317496166410141009864396001978282409983
57896044618658097711785492504343953926634992332820282019728792003956564819967
115792089237316195423570985008687907853269984665640564039457584007913129639935
231584178474632390847141970017375815706539969331281128078915168015826259279871
463168356949264781694283940034751631413079938662562256157830336031652518559743
926336713898529563388567880069503262826159877325124512315660672063305037119487
1852673427797059126777135760139006525652319754650249024631321344126610074238975
3705346855594118253554271520278013051304639509300498049262642688253220148477951
7410693711188236507108543040556026102609279018600996098525285376506440296955903
14821387422376473014217086081112052205218558037201992197050570753012880593911807
29642774844752946028434172162224104410437116074403984394101141506025761187823615
59285549689505892056868344324448208820874232148807968788202283012051522375647231
118571099379011784113736688648896417641748464297615937576404566024103044751294463
237142198758023568227473377297792835283496928595231875152809132048206089502588927
474284397516047136454946754595585670566993857190463750305618264096412179005177855
948568795032094272909893509191171341133987714380927500611236528192824358010355711
1897137590064188545819787018382342682267975428761855001222473056385648716020711423
3794275180128377091639574036764685364535950857523710002444946112771297432041422847
7588550360256754183279148073529370729071901715047420004889892225542594864082845695
15177100720513508366558296147058741458143803430094840009779784451085189728165691391
30354201441027016733116592294117482916287606860189680019559568902170379456331382783
60708402882054033466233184588234965832575213720379360039119137804340758912662765567
121416805764108066932466369176469931665150427440758720078238275608681517825325531135
242833611528216133864932738352939863330300854881517440156476551217363035650651062271
485667223056432267729865476705879726660601709763034880312953102434726071301302124543
971334446112864535459730953411759453321203419526069760625906204869452142602604249087
1942668892225729070919461906823518906642406839052139521251812409738904285205208498175
3885337784451458141838923813647037813284813678104279042503624819477808570410416996351
7770675568902916283677847627294075626569627356208558085007249638955617140820833992703
15541351137805832567355695254588151253139254712417116170014499277911234281641667985407
31082702275611665134711390509176302506278509424834232340028998555822468563283335970815
62165404551223330269422781018352605012557018849668464680057997111644937126566671941631
124330809102446660538845562036705210025114037699336929360115994223289874253133343883263
248661618204893321077691124073410420050228075398673858720231988446579748506266687766527
497323236409786642155382248146820840100456150797347717440463976893159497012533375533055
994646472819573284310764496293641680200912301594695434880927953786318994025066751066111
1989292945639146568621528992587283360401824603189390869761855907572637988050133502132223
3978585891278293137243057985174566720803649206378781739523711815145275976100267004264447
7957171782556586274486115970349133441607298412757563479047423630290551952200534008528895
15914343565113172548972231940698266883214596825515126958094847260581103904401068017057791
31828687130226345097944463881396533766429193651030253916189694521162207808802136034115583
63657374260452690195888927762793067532858387302060507832379389042324415617604272068231167
127314748520905380391777855525586135065716774604121015664758778084648831235208544136462335
254629497041810760783555711051172270131433549208242031329517556169297662470417088272924671
509258994083621521567111422102344540262867098416484062659035112338595324940834176545849343
1018517988167243043134222844204689080525734196832968125318070224677190649881668353091698687
2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397375
4074071952668972172536891376818756322102936787331872501272280898708762599526673412366794751
8148143905337944345073782753637512644205873574663745002544561797417525199053346824733589503
16296287810675888690147565507275025288411747149327490005089123594835050398106693649467179007
32592575621351777380295131014550050576823494298654980010178247189670100796213387298934358015
65185151242703554760590262029100101153646988597309960020356494379340201592426774597868716031

13.3. Running Code 75

Jupyter Notebook Documentation, Release 5.0.0.dev

130370302485407109521180524058200202307293977194619920040712988758680403184853549195737432063
260740604970814219042361048116400404614587954389239840081425977517360806369707098391474864127
521481209941628438084722096232800809229175908778479680162851955034721612739414196782949728255
1042962419883256876169444192465601618458351817556959360325703910069443225478828393565899456511
2085924839766513752338888384931203236916703635113918720651407820138886450957656787131798913023
4171849679533027504677776769862406473833407270227837441302815640277772901915313574263597826047
8343699359066055009355553539724812947666814540455674882605631280555545803830627148527195652095
16687398718132110018711107079449625895333629080911349765211262561111091607661254297054391304191
33374797436264220037422214158899251790667258161822699530422525122222183215322508594108782608383
66749594872528440074844428317798503581334516323645399060845050244444366430645017188217565216767
133499189745056880149688856635597007162669032647290798121690100488888732861290034376435130433535
266998379490113760299377713271194014325338065294581596243380200977777465722580068752870260867071
533996758980227520598755426542388028650676130589163192486760401955554931445160137505740521734143
1067993517960455041197510853084776057301352261178326384973520803911109862890320275011481043468287
2135987035920910082395021706169552114602704522356652769947041607822219725780640550022962086936575
4271974071841820164790043412339104229205409044713305539894083215644439451561281100045924173873151
8543948143683640329580086824678208458410818089426611079788166431288878903122562200091848347746303
17087896287367280659160173649356416916821636178853222159576332862577757806245124400183696695492607
34175792574734561318320347298712833833643272357706444319152665725155515612490248800367393390985215
68351585149469122636640694597425667667286544715412888638305331450311031224980497600734786781970431
136703170298938245273281389194851335334573089430825777276610662900622062449960995201469573563940863
273406340597876490546562778389702670669146178861651554553221325801244124899921990402939147127881727
546812681195752981093125556779405341338292357723303109106442651602488249799843980805878294255763455
1093625362391505962186251113558810682676584715446606218212885303204976499599687961611756588511526911
2187250724783011924372502227117621365353169430893212436425770606409952999199375923223513177023053823
4374501449566023848745004454235242730706338861786424872851541212819905998398751846447026354046107647
8749002899132047697490008908470485461412677723572849745703082425639811996797503692894052708092215295
17498005798264095394980017816940970922825355447145699491406164851279623993595007385788105416184430591
34996011596528190789960035633881941845650710894291398982812329702559247987190014771576210832368861183
69992023193056381579920071267763883691301421788582797965624659405118495974380029543152421664737722367
139984046386112763159840142535527767382602843577165595931249318810236991948760059086304843329475444735
279968092772225526319680285071055534765205687154331191862498637620473983897520118172609686658950889471
559936185544451052639360570142111069530411374308662383724997275240947967795040236345219373317901778943
1119872371088902105278721140284222139060822748617324767449994550481895935590080472690438746635803557887
2239744742177804210557442280568444278121645497234649534899989100963791871180160945380877493271607115775
4479489484355608421114884561136888556243290994469299069799978201927583742360321890761754986543214231551
8958978968711216842229769122273777112486581988938598139599956403855167484720643781523509973086428463103
17917957937422433684459538244547554224973163977877196279199912807710334969441287563047019946172856926207
35835915874844867368919076489095108449946327955754392558399825615420669938882575126094039892345713852415
71671831749689734737838152978190216899892655911508785116799651230841339877765150252188079784691427704831
143343663499379469475676305956380433799785311823017570233599302461682679755530300504376159569382855409663
286687326998758938951352611912760867599570623646035140467198604923365359511060601008752319138765710819327
573374653997517877902705223825521735199141247292070280934397209846730719022121202017504638277531421638655
1146749307995035755805410447651043470398282494584140561868794419693461438044242404035009276555062843277311
2293498615990071511610820895302086940796564989168281123737588839386922876088484808070018553110125686554623
4586997231980143023221641790604173881593129978336562247475177678773845752176969616140037106220251373109247
9173994463960286046443283581208347763186259956673124494950355357547691504353939232280074212440502746218495
18347988927920572092886567162416695526372519913346248989900710715095383008707878464560148424881005492436991
36695977855841144185773134324833391052745039826692497979801421430190766017415756929120296849762010984873983
73391955711682288371546268649666782105490079653384995959602842860381532034831513858240593699524021969747967
146783911423364576743092537299333564210980159306769991919205685720763064069663027716481187399048043939495935
293567822846729153486185074598667128421960318613539983838411371441526128139326055432962374798096087878991871
587135645693458306972370149197334256843920637227079967676822742883052256278652110865924749596192175757983743
1174271291386916613944740298394668513687841274454159935353645485766104512557304221731849499192384351515967487

76 Chapter 13. Examples

Jupyter Notebook Documentation, Release 5.0.0.dev

2348542582773833227889480596789337027375682548908319870707290971532209025114608443463698998384768703031934975
4697085165547666455778961193578674054751365097816639741414581943064418050229216886927397996769537406063869951
9394170331095332911557922387157348109502730195633279482829163886128836100458433773854795993539074812127739903
18788340662190665823115844774314696219005460391266558965658327772257672200916867547709591987078149624255479807
37576681324381331646231689548629392438010920782533117931316655544515344401833735095419183974156299248510959615
75153362648762663292463379097258784876021841565066235862633311089030688803667470190838367948312598497021919231
150306725297525326584926758194517569752043683130132471725266622178061377607334940381676735896625196994043838463
300613450595050653169853516389035139504087366260264943450533244356122755214669880763353471793250393988087676927
601226901190101306339707032778070279008174732520529886901066488712245510429339761526706943586500787976175353855
1202453802380202612679414065556140558016349465041059773802132977424491020858679523053413887173001575952350707711
2404907604760405225358828131112281116032698930082119547604265954848982041717359046106827774346003151904701415423
4809815209520810450717656262224562232065397860164239095208531909697964083434718092213655548692006303809402830847
9619630419041620901435312524449124464130795720328478190417063819395928166869436184427311097384012607618805661695
19239260838083241802870625048898248928261591440656956380834127638791856333738872368854622194768025215237611323391
38478521676166483605741250097796497856523182881313912761668255277583712667477744737709244389536050430475222646783
76957043352332967211482500195592995713046365762627825523336510555167425334955489475418488779072100860950445293567
153914086704665934422965000391185991426092731525255651046673021110334850669910978950836977558144201721900890587135
307828173409331868845930000782371982852185463050511302093346042220669701339821957901673955116288403443801781174271
615656346818663737691860001564743965704370926101022604186692084441339402679643915803347910232576806887603562348543
1231312693637327475383720003129487931408741852202045208373384168882678805359287831606695820465153613775207124697087
2462625387274654950767440006258975862817483704404090416746768337765357610718575663213391640930307227550414249394175
4925250774549309901534880012517951725634967408808180833493536675530715221437151326426783281860614455100828498788351
9850501549098619803069760025035903451269934817616361666987073351061430442874302652853566563721228910201656997576703
19701003098197239606139520050071806902539869635232723333974146702122860885748605305707133127442457820403313995153407
39402006196394479212279040100143613805079739270465446667948293404245721771497210611414266254884915640806627990306815
78804012392788958424558080200287227610159478540930893335896586808491443542994421222828532509769831281613255980613631
157608024785577916849116160400574455220318957081861786671793173616982887085988842445657065019539662563226511961227263
315216049571155833698232320801148910440637914163723573343586347233965774171977684891314130039079325126453023922454527
630432099142311667396464641602297820881275828327447146687172694467931548343955369782628260078158650252906047844909055
1260864198284623334792929283204595641762551656654894293374345388935863096687910739565256520156317300505812095689818111
2521728396569246669585858566409191283525103313309788586748690777871726193375821479130513040312634601011624191379636223
5043456793138493339171717132818382567050206626619577173497381555743452386751642958261026080625269202023248382759272447
10086913586276986678343434265636765134100413253239154346994763111486904773503285916522052161250538404046496765518544895
20173827172553973356686868531273530268200826506478308693989526222973809547006571833044104322501076808092993531037089791
40347654345107946713373737062547060536401653012956617387979052445947619094013143666088208645002153616185987062074179583
80695308690215893426747474125094121072803306025913234775958104891895238188026287332176417290004307232371974124148359167
161390617380431786853494948250188242145606612051826469551916209783790476376052574664352834580008614464743948248296718335
322781234760863573706989896500376484291213224103652939103832419567580952752105149328705669160017228929487896496593436671
645562469521727147413979793000752968582426448207305878207664839135161905504210298657411338320034457858975792993186873343
1291124939043454294827959586001505937164852896414611756415329678270323811008420597314822676640068915717951585986373746687
2582249878086908589655919172003011874329705792829223512830659356540647622016841194629645353280137831435903171972747493375
5164499756173817179311838344006023748659411585658447025661318713081295244033682389259290706560275662871806343945494986751
10328999512347634358623676688012047497318823171316894051322637426162590488067364778518581413120551325743612687890989973503
20657999024695268717247353376024094994637646342633788102645274852325180976134729557037162826241102651487225375781979947007
41315998049390537434494706752048189989275292685267576205290549704650361952269459114074325652482205302974450751563959894015
82631996098781074868989413504096379978550585370535152410581099409300723904538918228148651304964410605948901503127919788031
165263992197562149737978827008192759957101170741070304821162198818601447809077836456297302609928821211897803006255839576063
330527984395124299475957654016385519914202341482140609642324397637202895618155672912594605219857642423795606012511679152127
661055968790248598951915308032771039828404682964281219284648795274405791236311345825189210439715284847591212025023358304255
1322111937580497197903830616065542079656809365928562438569297590548811582472622691650378420879430569695182424050046716608511
2644223875160994395807661232131084159313618731857124877138595181097623164945245383300756841758861139390364848100093433217023
5288447750321988791615322464262168318627237463714249754277190362195246329890490766601513683517722278780729696200186866434047
10576895500643977583230644928524336637254474927428499508554380724390492659780981533203027367035444557561459392400373732868095
21153791001287955166461289857048673274508949854856999017108761448780985319561963066406054734070889115122918784800747465736191

13.3. Running Code 77

Jupyter Notebook Documentation, Release 5.0.0.dev

42307582002575910332922579714097346549017899709713998034217522897561970639123926132812109468141778230245837569601494931472383
84615164005151820665845159428194693098035799419427996068435045795123941278247852265624218936283556460491675139202989862944767
169230328010303641331690318856389386196071598838855992136870091590247882556495704531248437872567112920983350278405979725889535
338460656020607282663380637712778772392143197677711984273740183180495765112991409062496875745134225841966700556811959451779071
676921312041214565326761275425557544784286395355423968547480366360991530225982818124993751490268451683933401113623918903558143
1353842624082429130653522550851115089568572790710847937094960732721983060451965636249987502980536903367866802227247837807116287
2707685248164858261307045101702230179137145581421695874189921465443966120903931272499975005961073806735733604454495675614232575
5415370496329716522614090203404460358274291162843391748379842930887932241807862544999950011922147613471467208908991351228465151
10830740992659433045228180406808920716548582325686783496759685861775864483615725089999900023844295226942934417817982702456930303
21661481985318866090456360813617841433097164651373566993519371723551728967231450179999800047688590453885868835635965404913860607
43322963970637732180912721627235682866194329302747133987038743447103457934462900359999600095377180907771737671271930809827721215
86645927941275464361825443254471365732388658605494267974077486894206915868925800719999200190754361815543475342543861619655442431
173291855882550928723650886508942731464777317210988535948154973788413831737851601439998400381508723631086950685087723239310884863
346583711765101857447301773017885462929554634421977071896309947576827663475703202879996800763017447262173901370175446478621769727
693167423530203714894603546035770925859109268843954143792619895153655326951406405759993601526034894524347802740350892957243539455
1386334847060407429789207092071541851718218537687908287585239790307310653902812811519987203052069789048695605480701785914487078911
2772669694120814859578414184143083703436437075375816575170479580614621307805625623039974406104139578097391210961403571828974157823
5545339388241629719156828368286167406872874150751633150340959161229242615611251246079948812208279156194782421922807143657948315647
11090678776483259438313656736572334813745748301503266300681918322458485231222502492159897624416558312389564843845614287315896631295
22181357552966518876627313473144669627491496603006532601363836644916970462445004984319795248833116624779129687691228574631793262591
44362715105933037753254626946289339254982993206013065202727673289833940924890009968639590497666233249558259375382457149263586525183
88725430211866075506509253892578678509965986412026130405455346579667881849780019937279180995332466499116518750764914298527173050367
177450860423732151013018507785157357019931972824052260810910693159335763699560039874558361990664932998233037501529828597054346100735
354901720847464302026037015570314714039863945648104521621821386318671527399120079749116723981329865996466075003059657194108692201471
709803441694928604052074031140629428079727891296209043243642772637343054798240159498233447962659731992932150006119314388217384402943
1419606883389857208104148062281258856159455782592418086487285545274686109596480318996466895925319463985864300012238628776434768805887
2839213766779714416208296124562517712318911565184836172974571090549372219192960637992933791850638927971728600024477257552869537611775
5678427533559428832416592249125035424637823130369672345949142181098744438385921275985867583701277855943457200048954515105739075223551
11356855067118857664833184498250070849275646260739344691898284362197488876771842551971735167402555711886914400097909030211478150447103
22713710134237715329666368996500141698551292521478689383796568724394977753543685103943470334805111423773828800195818060422956300894207
45427420268475430659332737993000283397102585042957378767593137448789955507087370207886940669610222847547657600391636120845912601788415
90854840536950861318665475986000566794205170085914757535186274897579911014174740415773881339220445695095315200783272241691825203576831
181709681073901722637330951972001133588410340171829515070372549795159822028349480831547762678440891390190630401566544483383650407153663
363419362147803445274661903944002267176820680343659030140745099590319644056698961663095525356881782780381260803133088966767300814307327
726838724295606890549323807888004534353641360687318060281490199180639288113397923326191050713763565560762521606266177933534601628614655
1453677448591213781098647615776009068707282721374636120562980398361278576226795846652382101427527131121525043212532355867069203257229311
2907354897182427562197295231552018137414565442749272241125960796722557152453591693304764202855054262243050086425064711734138406514458623
5814709794364855124394590463104036274829130885498544482251921593445114304907183386609528405710108524486100172850129423468276813028917247
11629419588729710248789180926208072549658261770997088964503843186890228609814366773219056811420217048972200345700258846936553626057834495
23258839177459420497578361852416145099316523541994177929007686373780457219628733546438113622840434097944400691400517693873107252115668991
46517678354918840995156723704832290198633047083988355858015372747560914439257467092876227245680868195888801382801035387746214504231337983
93035356709837681990313447409664580397266094167976711716030745495121828878514934185752454491361736391777602765602070775492429008462675967
186070713419675363980626894819329160794532188335953423432061490990243657757029868371504908982723472783555205531204141550984858016925351935
372141426839350727961253789638658321589064376671906846864122981980487315514059736743009817965446945567110411062408283101969716033850703871
744282853678701455922507579277316643178128753343813693728245963960974631028119473486019635930893891134220822124816566203939432067701407743
1488565707357402911845015158554633286356257506687627387456491927921949262056238946972039271861787782268441644249633132407878864135402815487
2977131414714805823690030317109266572712515013375254774912983855843898524112477893944078543723575564536883288499266264815757728270805630975
5954262829429611647380060634218533145425030026750509549825967711687797048224955787888157087447151129073766576998532529631515456541611261951
11908525658859223294760121268437066290850060053501019099651935423375594096449911575776314174894302258147533153997065059263030913083222523903
23817051317718446589520242536874132581700120107002038199303870846751188192899823151552628349788604516295066307994130118526061826166445047807
47634102635436893179040485073748265163400240214004076398607741693502376385799646303105256699577209032590132615988260237052123652332890095615
95268205270873786358080970147496530326800480428008152797215483387004752771599292606210513399154418065180265231976520474104247304665780191231
190536410541747572716161940294993060653600960856016305594430966774009505543198585212421026798308836130360530463953040948208494609331560382463
381072821083495145432323880589986121307201921712032611188861933548019011086397170424842053596617672260721060927906081896416989218663120764927

78 Chapter 13. Examples

Jupyter Notebook Documentation, Release 5.0.0.dev

762145642166990290864647761179972242614403843424065222377723867096038022172794340849684107193235344521442121855812163792833978437326241529855
1524291284333980581729295522359944485228807686848130444755447734192076044345588681699368214386470689042884243711624327585667956874652483059711
3048582568667961163458591044719888970457615373696260889510895468384152088691177363398736428772941378085768487423248655171335913749304966119423
6097165137335922326917182089439777940915230747392521779021790936768304177382354726797472857545882756171536974846497310342671827498609932238847
12194330274671844653834364178879555881830461494785043558043581873536608354764709453594945715091765512343073949692994620685343654997219864477695
24388660549343689307668728357759111763660922989570087116087163747073216709529418907189891430183531024686147899385989241370687309994439728955391
48777321098687378615337456715518223527321845979140174232174327494146433419058837814379782860367062049372295798771978482741374619988879457910783
97554642197374757230674913431036447054643691958280348464348654988292866838117675628759565720734124098744591597543956965482749239977758915821567
195109284394749514461349826862072894109287383916560696928697309976585733676235351257519131441468248197489183195087913930965498479955517831643135
390218568789499028922699653724145788218574767833121393857394619953171467352470702515038262882936496394978366390175827861930996959911035663286271
780437137578998057845399307448291576437149535666242787714789239906342934704941405030076525765872992789956732780351655723861993919822071326572543
1560874275157996115690798614896583152874299071332485575429578479812685869409882810060153051531745985579913465560703311447723987839644142653145087
3121748550315992231381597229793166305748598142664971150859156959625371738819765620120306103063491971159826931121406622895447975679288285306290175
6243497100631984462763194459586332611497196285329942301718313919250743477639531240240612206126983942319653862242813245790895951358576570612580351
12486994201263968925526388919172665222994392570659884603436627838501486955279062480481224412253967884639307724485626491581791902717153141225160703
24973988402527937851052777838345330445988785141319769206873255677002973910558124960962448824507935769278615448971252983163583805434306282450321407
49947976805055875702105555676690660891977570282639538413746511354005947821116249921924897649015871538557230897942505966327167610868612564900642815
99895953610111751404211111353381321783955140565279076827493022708011895642232499843849795298031743077114461795885011932654335221737225129801285631
199791907220223502808422222706762643567910281130558153654986045416023791284464999687699590596063486154228923591770023865308670443474450259602571263
399583814440447005616844445413525287135820562261116307309972090832047582568929999375399181192126972308457847183540047730617340886948900519205142527
799167628880894011233688890827050574271641124522232614619944181664095165137859998750798362384253944616915694367080095461234681773897801038410285055
1598335257761788022467377781654101148543282249044465229239888363328190330275719997501596724768507889233831388734160190922469363547795602076820570111
3196670515523576044934755563308202297086564498088930458479776726656380660551439995003193449537015778467662777468320381844938727095591204153641140223
6393341031047152089869511126616404594173128996177860916959553453312761321102879990006386899074031556935325554936640763689877454191182408307282280447
12786682062094304179739022253232809188346257992355721833919106906625522642205759980012773798148063113870651109873281527379754908382364816614564560895
25573364124188608359478044506465618376692515984711443667838213813251045284411519960025547596296126227741302219746563054759509816764729633229129121791
51146728248377216718956089012931236753385031969422887335676427626502090568823039920051095192592252455482604439493126109519019633529459266458258243583
102293456496754433437912178025862473506770063938845774671352855253004181137646079840102190385184504910965208878986252219038039267058918532916516487167
204586912993508866875824356051724947013540127877691549342705710506008362275292159680204380770369009821930417757972504438076078534117837065833032974335
409173825987017733751648712103449894027080255755383098685411421012016724550584319360408761540738019643860835515945008876152157068235674131666065948671
818347651974035467503297424206899788054160511510766197370822842024033449101168638720817523081476039287721671031890017752304314136471348263332131897343
1636695303948070935006594848413799576108321023021532394741645684048066898202337277441635046162952078575443342063780035504608628272942696526664263794687

13.4 Markdown Cells

Text can be added to Jupyter Notebooks using Markdown cells. Markdown is a popular markup language that is a
superset of HTML. Its specification can be found here:

http://daringfireball.net/projects/markdown/

13.4.1 Markdown basics

You can make text italic or bold.

You can build nested itemized or enumerated lists:

• One

– Sublist

* This

• Sublist - That - The other thing

• Two

13.4. Markdown Cells 79

http://daringfireball.net/projects/markdown/

Jupyter Notebook Documentation, Release 5.0.0.dev

• Sublist

• Three

• Sublist

Now another list:

1. Here we go

(a) Sublist

(b) Sublist

2. There we go

3. Now this

You can add horizontal rules:

Here is a blockquote:

Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex
is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts.
Special cases aren’t special enough to break the rules. Although practicality beats purity. Errors should
never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it. Although that way may not be
obvious at first unless you’re Dutch. Now is better than never. Although never is often better than right
now. If the implementation is hard to explain, it’s a bad idea. If the implementation is easy to explain, it
may be a good idea. Namespaces are one honking great idea – let’s do more of those!

And shorthand for links:

Jupyter’s website

13.4.2 Headings

You can add headings by starting a line with one (or multiple) # followed by a space, as in the following example:

Heading 1
Heading 2
Heading 2.1
Heading 2.2

13.4.3 Embedded code

You can embed code meant for illustration instead of execution in Python:

def f(x):
"""a docstring"""
return x**2

or other languages:

if (i=0; i<n; i++) {
printf("hello %d\n", i);
x += 4;

}

80 Chapter 13. Examples

http://jupyter.org

Jupyter Notebook Documentation, Release 5.0.0.dev

13.4.4 LaTeX equations

Courtesy of MathJax, you can include mathematical expressions both inline: 𝑒𝑖𝜋 + 1 = 0 and displayed:

𝑒𝑥 =

∞∑︁
𝑖=0

1

𝑖!
𝑥𝑖

Inline expressions can be added by surrounding the latex code with $:

$e^{i\pi} + 1 = 0$

Expressions on their own line are surrounded by $$:

$$e^x=\sum_{i=0}^\infty \frac{1}{i!}x^i$$

13.4.5 GitHub flavored markdown

The Notebook webapp supports Github flavored markdown meaning that you can use triple backticks for code blocks:

<pre>
```python
print "Hello World"
```
</pre>

<pre>
```javascript
console.log("Hello World")
```
</pre>

Gives:

print "Hello World"

console.log("Hello World")

And a table like this:

<pre>
```

| This | is |
|------|------|
| a | table|

```
</pre>

A nice HTML Table:

This is
a table

13.4.6 General HTML

Because Markdown is a superset of HTML you can even add things like HTML tables:

13.4. Markdown Cells 81

Jupyter Notebook Documentation, Release 5.0.0.dev

Header 1

Header 2

row 1, cell 1

row 1, cell 2

row 2, cell 1

row 2, cell 2

13.4.7 Local files

If you have local files in your Notebook directory, you can refer to these files in Markdown cells directly:

[subdirectory/]<filename>

For example, in the images folder, we have the Python logo:

and a video with the HTML5 video tag:

<video controls src="../images/animation.m4v" />

These do not embed the data into the notebook file, and require that the files exist when you are viewing the notebook.

Security of local files

Note that this means that the Jupyter notebook server also acts as a generic file server for files inside the same tree
as your notebooks. Access is not granted outside the notebook folder so you have strict control over what files are
visible, but for this reason it is highly recommended that you do not run the notebook server with a notebook directory
at a high level in your filesystem (e.g. your home directory).

When you run the notebook in a password-protected manner, local file access is restricted to authenticated users unless
read-only views are active.

13.5 Keyboard Shortcut Customization

Starting with IPython 2.0 keyboard shortcuts in command and edit mode are fully customizable. These customizations
are made using the Jupyter JavaScript API. Here is an example that makes the r key available for running a cell:

In [1]: %%javascript

Jupyter.keyboard_manager.command_shortcuts.add_shortcut('r', {
help : 'run cell',
help_index : 'zz',
handler : function (event) {

IPython.notebook.execute_cell();
return false;

}}
);

<IPython.core.display.Javascript object>

82 Chapter 13. Examples

Jupyter Notebook Documentation, Release 5.0.0.dev

“By default the keypress r, while in command mode, changes the type of the selected cell to raw. This shortcut is
overridden by the code in the previous cell, and thus the action no longer be available via the keypress r.”

There are a couple of points to mention about this API:

• The help_index field is used to sort the shortcuts in the Keyboard Shortcuts help dialog. It defaults to zz.

• When a handler returns false it indicates that the event should stop propagating and the default action should
not be performed. For further details about the event object or event handling, see the jQuery docs.

• If you don’t need a help or help_index field, you can simply pass a function as the second argument to
add_shortcut.

In [2]: %%javascript

Jupyter.keyboard_manager.command_shortcuts.add_shortcut('r', function (event) {
IPython.notebook.execute_cell();
return false;

});

<IPython.core.display.Javascript object>

Likewise, to remove a shortcut, use remove_shortcut:

In [3]: %%javascript

Jupyter.keyboard_manager.command_shortcuts.remove_shortcut('r');

<IPython.core.display.Javascript object>

If you want your keyboard shortcuts to be active for all of your notebooks, put the above API calls into your
custom.js file.

Of course we provide name for majority of existing action so that you do not have to re-write everything, here is for
example how to bind r back to it’s initial behavior:

In [4]: %%javascript

Jupyter.keyboard_manager.command_shortcuts.add_shortcut('r', 'jupyter-notebook:change-cell-to-raw');

<IPython.core.display.Javascript object>

13.6 Embracing web standards

One of the main reasons why we developed the current notebook web application was to embrace the web technology.

By being a pure web application using HTML, Javascript, and CSS, the Notebook can get all the web technology
improvement for free. Thus, as browser support for different media extend, the notebook web app should be able to
be compatible without modification.

This is also true with performance of the User Interface as the speed of Javascript VM increases.

The other advantage of using only web technology is that the code of the interface is fully accessible to the end user
and is modifiable live. Even if this task is not always easy, we strive to keep our code as accessible and reusable as
possible. This should allow us - with minimum effort - development of small extensions that customize the behavior
of the web interface.

13.6. Embracing web standards 83

Jupyter Notebook Documentation, Release 5.0.0.dev

13.6.1 Tampering with the Notebook application

The first tool that is available to you and that you should be aware of are browser “developers tool”. The exact
naming can change across browser and might require the installation of extensions. But basically they can allow you
to inspect/modify the DOM, and interact with the javascript code that runs the frontend.

• In Chrome and Safari, Developer tools are in the menu View > Developer > Javascript Console

• In Firefox you might need to install Firebug

Those will be your best friends to debug and try different approaches for your extensions.

Injecting JS

Using magics

The above tools can be tedious for editing edit long JavaScript files. Therefore we provide the %%javascript
magic. This allows you to quickly inject JavaScript into the notebook. Still the javascript injected this way will not
survive reloading. Hence, it is a good tool for testing an refining a script.

You might see here and there people modifying css and injecting js into the notebook by reading file(s) and publishing
them into the notebook. Not only does this often break the flow of the notebook and make the re-execution of the
notebook broken, but it also means that you need to execute those cells in the entire notebook every time you need to
update the code.

This can still be useful in some cases, like the %autosave magic that allows you to control the time between each
save. But this can be replaced by a JavaScript dropdown menu to select the save interval.

In []: ## you can inspect the autosave code to see what it does.
%autosave??

custom.js

To inject Javascript we provide an entry point: custom.js that allows the user to execute and load other resources
into the notebook. Javascript code in custom.js will be executed when the notebook app starts and can then be
used to customize almost anything in the UI and in the behavior of the notebook.

custom.js can be found in the ~/.jupyter/custom/custom.js. You can share your custom.js with others.

Back to theory

In []: from jupyter_core.paths import jupyter_config_dir
jupyter_dir = jupyter_config_dir()
jupyter_dir

and custom js is in

In []: import os.path
custom_js_path = os.path.join(jupyter_dir, 'custom', 'custom.js')

In []: # my custom js
if os.path.isfile(custom_js_path):

with open(custom_js_path) as f:
print(f.read())

else:
print("You don't have a custom.js file")

84 Chapter 13. Examples

http://getfirebug.com/

Jupyter Notebook Documentation, Release 5.0.0.dev

Note that custom.js is meant to be modified by user. When writing a script, you can define it in a separate file and
add a line of configuration into custom.js that will fetch and execute the file.

Warning : even if modification of custom.js takes effect immediately after browser refresh (except if browser
cache is aggressive), creating a file in static/ directory needs a server restart.

13.6.2 Exercise :

• Create a custom.js in the right location with the following content:

alert("hello world from custom.js")

• Restart your server and open any notebook.

• Be greeted by custom.js

Have a look at default custom.js, to see it’s content and for more explanation.

For the quick ones :

We’ve seen above that you can change the autosave rate by using a magic. This is typically something I don’t want to
type every time, and that I don’t like to embed into my workflow and documents. (readers don’t care what my autosave
time is). Let’s build an extension that allows us to do it.

Create a dropdown element in the toolbar (DOM Jupyter.toolbar.element), you will need

• Jupyter.notebook.set_autosave_interval(miliseconds)

• know that 1 min = 60 sec, and 1 sec = 1000 ms

var label = jQuery('<label/>').text('AutoScroll Limit:');
var select = jQuery('<select/>')

//.append(jQuery('<option/>').attr('value', '2').text('2min (default)'))
.append(jQuery('<option/>').attr('value', undefined).text('disabled'))

// TODO:
//the_toolbar_element.append(label)
//the_toolbar_element.append(select);

select.change(function() {
var val = jQuery(this).val() // val will be the value in [2]
// TODO
// this will be called when dropdown changes

});

var time_m = [1,5,10,15,30];
for (var i=0; i < time_m.length; i++) {

var ts = time_m[i];
//[2] ____ this will be `val` on [1]
// |
// v

select.append($('<option/>').attr('value', ts).text(thr+'min'));
// this will fill up the dropdown `select` with
// 1 min
// 5 min
// 10 min
// 10 min

13.6. Embracing web standards 85

https://github.com/jupyter/notebook/blob/4.0.x/notebook/static/custom/custom.js

Jupyter Notebook Documentation, Release 5.0.0.dev

// ...
}

A non-interactive example first

I like my cython to be nicely highlighted

Jupyter.config.cell_magic_highlight['magic_text/x-cython'] = {}
Jupyter.config.cell_magic_highlight['magic_text/x-cython'].reg = [/^%%cython/]

text/x-cython is the name of CodeMirror mode name, magic_ prefix will just patch the mode so that the first
line that contains a magic does not screw up the highlighting. regis a list or regular expression that will trigger the
change of mode.

Get more documentation

Sadly, you will have to read the js source file (but there are lots of comments) and/or build the JavaScript documentation
using yuidoc. If you have node and yui-doc installed:

$ cd ~/jupyter/notebook/notebook/static/notebook/js/
$ yuidoc . --server
warn: (yuidoc): Failed to extract port, setting to the default :3000
info: (yuidoc): Starting YUIDoc@0.3.45 using YUI@3.9.1 with NodeJS@0.10.15
info: (yuidoc): Scanning for yuidoc.json file.
info: (yuidoc): Starting YUIDoc with the following options:
info: (yuidoc):
{ port: 3000,

nocode: false,
paths: ['.'],
server: true,
outdir: './out' }

info: (yuidoc): Scanning for yuidoc.json file.
info: (server): Starting server: http://127.0.0.1:3000

and browse http://127.0.0.1:3000 to get documentation

Some convenience methods

By browsing the documentation you will see that we have some convenience methods that allows us to avoid re-
inventing the UI every time :

Jupyter.toolbar.add_buttons_group([
{

'label' : 'run qtconsole',
'icon' : 'icon-terminal', // select your icon from

// http://fortawesome.github.io/Font-Awesome/icons/
'callback': function(){Jupyter.notebook.kernel.execute('%qtconsole')}

}
// add more button here if needed.
]);

with a lot of icons you can select from.

86 Chapter 13. Examples

http://127.0.0.1:3000
http://fortawesome.github.io/Font-Awesome/icons/

Jupyter Notebook Documentation, Release 5.0.0.dev

13.6.3 Cell Metadata

The most requested feature is generally to be able to distinguish an individual cell in the notebook, or run a specific
action with them. To do so, you can either use Jupyter.notebook.get_selected_cell(), or rely on
CellToolbar. This allows you to register a set of actions and graphical elements that will be attached to individual
cells.

Cell Toolbar

You can see some example of what can be done by toggling the Cell Toolbar selector in the toolbar on top of the
notebook. It provides two default presets that are Default and slideshow. Default allows the user to edit the
metadata attached to each cell manually.

First we define a function that takes at first parameter an element on the DOM in which to inject UI element. The
second element is the cell this element wis registered with. Then we will need to register that function and give it a
name.

Register a callback

In []: %%javascript
var CellToolbar = Jupyter.CellToolbar
var toggle = function(div, cell) {

var button_container = $(div)

// let's create a button that shows the current value of the metadata
var button = $('<button/>').addClass('btn btn-mini').text(String(cell.metadata.foo));

// On click, change the metadata value and update the button label
button.click(function(){

var v = cell.metadata.foo;
cell.metadata.foo = !v;
button.text(String(!v));

})

// add the button to the DOM div.
button_container.append(button);

}

// now we register the callback under the name foo to give the
// user the ability to use it later
CellToolbar.register_callback('tuto.foo', toggle);

Registering a preset

This function can now be part of many preset of the CellToolBar.

In []: %%javascript
Jupyter.CellToolbar.register_preset('Tutorial 1',['tuto.foo','default.rawedit'])
Jupyter.CellToolbar.register_preset('Tutorial 2',['slideshow.select','tuto.foo'])

You should now have access to two presets :

• Tutorial 1

13.6. Embracing web standards 87

Jupyter Notebook Documentation, Release 5.0.0.dev

• Tutorial 2

And check that the buttons you defined share state when you toggle preset. Also check that the metadata of the cell is
modified when you click the button, and that when saved on reloaded the metadata is still available.

Exercise:

Try to wrap the all code in a file, put this file in {jupyter_dir}/custom/<a-name>.js, and add

require(['custom/<a-name>']);

in custom.js to have this script automatically loaded in all your notebooks.

require is provided by a javascript library that allow you to express dependency. For simple extension like the
previous one we directly mute the global namespace, but for more complex extension you could pass a callback to
require([...], <callback>) call, to allow the user to pass configuration information to your plugin.

In Python lang,

require(['a/b', 'c/d'], function(e, f){
e.something()
f.something()

})

could be read as

import a.b as e
import c.d as f
e.something()
f.something()

See for example @damianavila [”ZenMode” plugin](https://github.com/ipython-
contrib/jupyter_contrib_nbextensions/blob/b29c698394239a6931fa4911440550df214812cb/src/jupyter_contrib_nbextensions/nbextensions/zenmode/main.js#L32)
:

// read that as
// import custom.zenmode.main as zenmode
require(['custom/zenmode/main'],function(zenmode){

zenmode.background('images/back12.jpg');
})

For the quickest

Try to use the following to bind a dropdown list to cell.metadata.difficulty.select.

It should be able to take the 4 following values :

• <None>

• Easy

• Medium

• Hard

We will use it to customize the output of the converted notebook depending on the tag on each cell

In [1]: # %load soln/celldiff.js

In []:

88 Chapter 13. Examples

http://requirejs.org/
https://github.com/ipython-contrib/jupyter_contrib_nbextensions/blob/b29c698394239a6931fa4911440550df214812cb/src/jupyter_contrib_nbextensions/nbextensions/zenmode/main.js#L32
https://github.com/ipython-contrib/jupyter_contrib_nbextensions/blob/b29c698394239a6931fa4911440550df214812cb/src/jupyter_contrib_nbextensions/nbextensions/zenmode/main.js#L32
https://github.com/ipython/ipython/blob/1.x/IPython/html/static/notebook/js/celltoolbar.js#L367

Jupyter Notebook Documentation, Release 5.0.0.dev

13.7 Importing Jupyter Notebooks as Modules

It is a common problem that people want to import code from Jupyter Notebooks. This is made difficult by the fact
that Notebooks are not plain Python files, and thus cannot be imported by the regular Python machinery.

Fortunately, Python provides some fairly sophisticated hooks into the import machinery, so we can actually make
Jupyter notebooks importable without much difficulty, and only using public APIs.

In [1]: import io, os, sys, types

In [2]: from IPython import get_ipython
from nbformat import read
from IPython.core.interactiveshell import InteractiveShell

Import hooks typically take the form of two objects:

1. a Module Loader, which takes a module name (e.g. ’IPython.display’), and returns a Module

2. a Module Finder, which figures out whether a module might exist, and tells Python what Loader to use

In [3]: def find_notebook(fullname, path=None):
"""find a notebook, given its fully qualified name and an optional path

This turns "foo.bar" into "foo/bar.ipynb"
and tries turning "Foo_Bar" into "Foo Bar" if Foo_Bar
does not exist.
"""
name = fullname.rsplit('.', 1)[-1]
if not path:

path = ['']
for d in path:

nb_path = os.path.join(d, name + ".ipynb")
if os.path.isfile(nb_path):

return nb_path
let import Notebook_Name find "Notebook Name.ipynb"
nb_path = nb_path.replace("_", " ")
if os.path.isfile(nb_path):

return nb_path

13.7.1 Notebook Loader

Here we have our Notebook Loader. It’s actually quite simple - once we figure out the filename of the module, all it
does is:

1. load the notebook document into memory

2. create an empty Module

3. execute every cell in the Module namespace

Since IPython cells can have extended syntax, the IPython transform is applied to turn each of these cells into their
pure-Python counterparts before executing them. If all of your notebook cells are pure-Python, this step is unnecessary.

In [4]: class NotebookLoader(object):
"""Module Loader for Jupyter Notebooks"""
def __init__(self, path=None):

self.shell = InteractiveShell.instance()
self.path = path

13.7. Importing Jupyter Notebooks as Modules 89

http://www.python.org/dev/peps/pep-0302/

Jupyter Notebook Documentation, Release 5.0.0.dev

def load_module(self, fullname):
"""import a notebook as a module"""
path = find_notebook(fullname, self.path)

print ("importing Jupyter notebook from %s" % path)

load the notebook object
with io.open(path, 'r', encoding='utf-8') as f:

nb = read(f, 4)

create the module and add it to sys.modules
if name in sys.modules:
return sys.modules[name]
mod = types.ModuleType(fullname)
mod.__file__ = path
mod.__loader__ = self
mod.__dict__['get_ipython'] = get_ipython
sys.modules[fullname] = mod

extra work to ensure that magics that would affect the user_ns
actually affect the notebook module's ns
save_user_ns = self.shell.user_ns
self.shell.user_ns = mod.__dict__

try:
for cell in nb.cells:

if cell.cell_type == 'code':
transform the input to executable Python
code = self.shell.input_transformer_manager.transform_cell(cell.source)
run the code in themodule
exec(code, mod.__dict__)

finally:
self.shell.user_ns = save_user_ns

return mod

13.7.2 The Module Finder

The finder is a simple object that tells you whether a name can be imported, and returns the appropriate loader. All
this one does is check, when you do:

import mynotebook

it checks whether mynotebook.ipynb exists. If a notebook is found, then it returns a NotebookLoader.

Any extra logic is just for resolving paths within packages.

In [5]: class NotebookFinder(object):
"""Module finder that locates Jupyter Notebooks"""
def __init__(self):

self.loaders = {}

def find_module(self, fullname, path=None):

90 Chapter 13. Examples

Jupyter Notebook Documentation, Release 5.0.0.dev

nb_path = find_notebook(fullname, path)
if not nb_path:

return

key = path
if path:

lists aren't hashable
key = os.path.sep.join(path)

if key not in self.loaders:
self.loaders[key] = NotebookLoader(path)

return self.loaders[key]

13.7.3 Register the hook

Now we register the NotebookFinder with sys.meta_path

In [6]: sys.meta_path.append(NotebookFinder())

After this point, my notebooks should be importable.

Let’s look at what we have in the CWD:

In [7]: ls nbpackage

__init__.py -blue-intense__pycache__/ mynotebook.ipynb -blue-intensenbs/

So I should be able to import nbpackage.mynotebook.

In [8]: import nbpackage.mynotebook

importing Jupyter notebook from /home/docs/checkouts/readthedocs.org/user_builds/testnb/checkouts/nbcloud/docs/source/examples/Notebook/nbpackage/mynotebook.ipynb

Aside: displaying notebooks

Here is some simple code to display the contents of a notebook with syntax highlighting, etc.

In [9]: from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter

from IPython.display import display, HTML

formatter = HtmlFormatter()
lexer = PythonLexer()

publish the CSS for pygments highlighting
display(HTML("""
<style type='text/css'>
%s
</style>
""" % formatter.get_style_defs()
))

<IPython.core.display.HTML object>

13.7. Importing Jupyter Notebooks as Modules 91

Jupyter Notebook Documentation, Release 5.0.0.dev

In [10]: def show_notebook(fname):
"""display a short summary of the cells of a notebook"""
with io.open(fname, 'r', encoding='utf-8') as f:

nb = read(f, 4)
html = []
for cell in nb.cells:

html.append("<h4>%s cell</h4>" % cell.cell_type)
if cell.cell_type == 'code':

html.append(highlight(cell.source, lexer, formatter))
else:

html.append("<pre>%s</pre>" % cell.source)
display(HTML('\n'.join(html)))

show_notebook(os.path.join("nbpackage", "mynotebook.ipynb"))

<IPython.core.display.HTML object>

So my notebook has a heading cell and some code cells, one of which contains some IPython syntax.

Let’s see what happens when we import it

In [11]: from nbpackage import mynotebook

Hooray, it imported! Does it work?

In [12]: mynotebook.foo()

Out[12]: 'foo'

Hooray again!

Even the function that contains IPython syntax works:

In [13]: mynotebook.has_ip_syntax()

Out[13]: ['Connecting with the Qt Console.ipynb',
'Custom Keyboard Shortcuts.ipynb',
'Distributing Jupyter Extensions as Python Packages.ipynb',
'Importing Notebooks.ipynb',
'JavaScript Notebook Extensions.ipynb',
'Notebook Basics.ipynb',
'Running Code.ipynb',
'Typesetting Equations.ipynb',
'What is the Jupyter Notebook.ipynb',
'Working With Markdown Cells.ipynb',
'examples_index.rst',
'images',
'nbpackage']

13.7.4 Notebooks in packages

We also have a notebook inside the nb package, so let’s make sure that works as well.

In [14]: ls nbpackage/nbs

__init__.py -blue-intense__pycache__/ other.ipynb

Note that the __init__.py is necessary for nb to be considered a package, just like usual.

In [15]: show_notebook(os.path.join("nbpackage", "nbs", "other.ipynb"))

92 Chapter 13. Examples

Jupyter Notebook Documentation, Release 5.0.0.dev

<IPython.core.display.HTML object>

In [16]: from nbpackage.nbs import other
other.bar(5)

importing Jupyter notebook from /home/docs/checkouts/readthedocs.org/user_builds/testnb/checkouts/nbcloud/docs/source/examples/Notebook/nbpackage/nbs/other.ipynb

Out[16]: 'barbarbarbarbar'

So now we have importable notebooks, from both the local directory and inside packages.

I can even put a notebook inside IPython, to further demonstrate that this is working properly:

In [17]: import shutil
from IPython.paths import get_ipython_package_dir

utils = os.path.join(get_ipython_package_dir(), 'utils')
shutil.copy(os.path.join("nbpackage", "mynotebook.ipynb"),

os.path.join(utils, "inside_ipython.ipynb")
)

Out[17]: '/home/docs/checkouts/readthedocs.org/user_builds/testnb/conda/nbcloud/lib/python3.5/site-packages/IPython/utils/inside_ipython.ipynb'

and import the notebook from IPython.utils

In [18]: from IPython.utils import inside_ipython
inside_ipython.whatsmyname()

importing Jupyter notebook from /home/docs/checkouts/readthedocs.org/user_builds/testnb/conda/nbcloud/lib/python3.5/site-packages/IPython/utils/inside_ipython.ipynb

Out[18]: 'IPython.utils.inside_ipython'

This approach can even import functions and classes that are defined in a notebook using the %%cython magic.

13.8 Connecting to an existing IPython kernel using the Qt Console

13.8.1 The Frontend/Kernel Model

The traditional IPython (ipython) consists of a single process that combines a terminal based UI with the process
that runs the users code.

While this traditional application still exists, the modern Jupyter consists of two processes:

• Kernel: this is the process that runs the users code.

• Frontend: this is the process that provides the user interface where the user types code and sees results.

Jupyter currently has 3 frontends:

• Terminal Console (ipython console)

• Qt Console (ipython qtconsole)

• Notebook (ipython notebook)

The Kernel and Frontend communicate over a ZeroMQ/JSON based messaging protocol, which allows multiple Fron-
tends (even of different types) to communicate with a single Kernel. This opens the door for all sorts of interesting
things, such as connecting a Console or Qt Console to a Notebook’s Kernel. For example, you may want to connect
a Qt console to your Notebook’s Kernel and use it as a help browser, calling ?? on objects in the Qt console (whose
pager is more flexible than the one in the notebook).

This Notebook describes how you would connect another Frontend to a Kernel that is associated with a Notebook.

13.8. Connecting to an existing IPython kernel using the Qt Console 93

Jupyter Notebook Documentation, Release 5.0.0.dev

13.8.2 Manual connection

To connect another Frontend to a Kernel manually, you first need to find out the connection information for the Kernel
using the %connect_info magic:

In [1]: %connect_info

"hb_port": 45238, "control_port": 56404, "ip": "127.0.0.1", "transport": "tcp", "shell_port": 36754, "key": "ba37a6d5-b930-4ca2-ba02-2e8fab66e8c9", "iopub_port": 53155, "signature_scheme": "hmac-sha256", "kernel_name": "", "stdin_port": 56096

Paste the above JSON into a file, and connect with:
$> jupyter <app> --existing <file>

or, if you are local, you can connect with just:
$> jupyter <app> --existing /tmp/tmpf6sbh__4.json

or even just:
$> jupyter <app> --existing

if this is the most recent Jupyter kernel you have started.

You can see that this magic displays everything you need to connect to this Notebook’s Kernel.

13.8.3 Automatic connection using a new Qt Console

You can also start a new Qt Console connected to your current Kernel by using the %qtconsole magic. This will
detect the necessary connection information and start the Qt Console for you automatically.

In [2]: a = 10

In [3]: %qtconsole

The Markdown parser included in the Jupyter Notebook is MathJax-aware. This means that you can freely mix in
mathematical expressions using the MathJax subset of Tex and LaTeX. Some examples from the MathJax site are
reproduced below, as well as the Markdown+TeX source.

13.9 Motivating Examples

13.9.1 The Lorenz Equations

Source

\begin{align}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{align}

Display

94 Chapter 13. Examples

http://docs.mathjax.org/en/latest/tex.html#tex-support
http://www.mathjax.org/demos/tex-samples/

Jupyter Notebook Documentation, Release 5.0.0.dev

13.9.2 The Cauchy-Schwarz Inequality

Source

\begin{equation*}
\left(\sum_{k=1}^n a_k b_k \right)^2 \leq \left(\sum_{k=1}^n a_k^2 \right) \left(\sum_{k=1}^n b_k^2 \right)
\end{equation*}

Display

(
∑︀𝑛

𝑘=1 𝑎𝑘𝑏𝑘)
2 ≤

(︀∑︀𝑛
𝑘=1 𝑎

2
𝑘

)︀ (︀∑︀𝑛
𝑘=1 𝑏

2
𝑘

)︀
13.9.3 A Cross Product Formula

Source

\begin{equation*}
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
\end{vmatrix}
\end{equation*}

Display

V1 ×V2 =

⃒⃒⃒⃒
⃒⃒ i j k
𝜕𝑋
𝜕𝑢

𝜕𝑌
𝜕𝑢 0

𝜕𝑋
𝜕𝑣

𝜕𝑌
𝜕𝑣 0

⃒⃒⃒⃒
⃒⃒

13.9.4 The probability of getting (k) heads when flipping (n) coins is

Source

\begin{equation*}
P(E) = {n \choose k} p^k (1-p)^{ n-k}
\end{equation*}

Display

𝑃 (𝐸) =
(︀
𝑛
𝑘

)︀
𝑝𝑘(1− 𝑝)𝑛−𝑘

13.9.5 An Identity of Ramanujan

Source

13.9. Motivating Examples 95

Jupyter Notebook Documentation, Release 5.0.0.dev

\begin{equation*}
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } }
\end{equation*}

Display

1(︁√
𝜑
√
5−𝜑

)︁
𝑒
2
5
𝜋
= 1 + 𝑒−2𝜋

1+ 𝑒−4𝜋

1+ 𝑒−6𝜋

1+ 𝑒−8𝜋
1+...

13.9.6 A Rogers-Ramanujan Identity

Source

\begin{equation*}
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},
\quad\quad \text{for $|q|<1$}.
\end{equation*}

Display

1 +
𝑞2

(1− 𝑞)
+

𝑞6

(1− 𝑞)(1− 𝑞2)
+ · · · =

∞∏︁
𝑗=0

1

(1− 𝑞5𝑗+2)(1− 𝑞5𝑗+3)
, for |𝑞| < 1.

13.9.7 Maxwell’s Equations

Source

\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}

Display

13.9.8 Equation Numbering and References

Equation numbering and referencing will be available in a future version of the Jupyter notebook.

96 Chapter 13. Examples

Jupyter Notebook Documentation, Release 5.0.0.dev

13.9.9 Inline Typesetting (Mixing Markdown and TeX)

While display equations look good for a page of samples, the ability to mix math and formatted text in a paragraph is
also important.

Source

This expression $\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a [Markdown-formatted](http://daringfireball.net/projects/markdown/) sentence.

Display

This expression
√
3𝑥− 1 + (1 + 𝑥)2 is an example of a TeX inline equation in a Markdown-formatted sentence.

13.9.10 Other Syntax

You will notice in other places on the web that $$ are needed explicitly to begin and end MathJax typesetting. This
is not required if you will be using TeX environments, but the Jupyter notebook will accept this syntax on legacy
notebooks.

13.9.11 Source

$$
\begin{array}{c}
y_1 \\\
y_2 \mathtt{t}_i \\\
z_{3,4}
\end{array}
$$

$$
\begin{array}{c}
y_1 \cr
y_2 \mathtt{t}_i \cr
y_{3}
\end{array}
$$

$$\begin{eqnarray}
x' &=& &x \sin\phi &+& z \cos\phi \\
z' &=& - &x \cos\phi &+& z \sin\phi \\
\end{eqnarray}$$

$$
x=4
$$

13.9. Motivating Examples 97

http://daringfireball.net/projects/markdown/

Jupyter Notebook Documentation, Release 5.0.0.dev

13.9.12 Display

𝑦1
𝑦2t𝑖
𝑧3,4

𝑦1
𝑦2t𝑖
𝑦3

𝑥′ = x sin𝜑
+ 𝑧 cos𝜑 (13.1)
𝑧′ = − x cos𝜑
+ 𝑧 sin𝜑 (13.2)

(13.3)

x=4

98 Chapter 13. Examples

CHAPTER 14

My Notebook

In [1]: def foo():
return "foo"

In [2]: def has_ip_syntax():
listing = !ls
return listing

In [4]: def whatsmyname():
return __name__

99

Jupyter Notebook Documentation, Release 5.0.0.dev

100 Chapter 14. My Notebook

CHAPTER 15

Other notebook

This notebook just defines bar

In [2]: def bar(x):
return "bar" * x

101

Jupyter Notebook Documentation, Release 5.0.0.dev

102 Chapter 15. Other notebook

CHAPTER 16

Jupyter notebook changelog

A summary of changes in the Jupyter notebook. For more detailed information, see GitHub.

Tip: Use pip install notebook --upgrade or conda upgrade notebook to upgrade to the latest
release.

16.1 4.2.2

4.2.2 is a small bugfix release on 4.2, with an important security fix. All users are strongly encouraged to upgrade to
4.2.2.

Highlights:

• Security fix: CVE-2016-6524, where untrusted latex output could be added to the page in a way that could
execute javascript.

• Fix missing POST in OPTIONS responses.

• Fix for downloading non-ascii filenames.

• Avoid clobbering ssl_options, so that users can specify more detailed SSL configuration.

• Fix inverted load order in nbconfig, so user config has highest priority.

• Improved error messages here and there.

See also:

4.2.2 on GitHub.

16.2 4.2.1

4.2.1 is a small bugfix release on 4.2. Highlights:

• Compatibility fixes for some versions of ipywidgets

• Fix for ignored CSS on Windows

• Fix specifying destination when installing nbextensions

See also:

4.2.1 on GitHub.

103

https://github.com/jupyter/notebook
https://github.com/jupyter/notebook/milestones/4.2.2
https://github.com/jupyter/notebook/milestones/4.2.1

Jupyter Notebook Documentation, Release 5.0.0.dev

16.3 4.2.0

Release 4.2 adds a new API for enabling and installing extensions. Extensions can now be enabled at the system-level,
rather than just per-user. An API is defined for installing directly from a Python package, as well.

See also:

Distributing Jupyter Extensions as Python Packages

Highlighted changes:

• Upgrade MathJax to 2.6 to fix vertical-bar appearing on some equations.

• Restore ability for notebook directory to be root (4.1 regression)

• Large outputs are now throttled, reducing the ability of output floods to kill the browser.

• Fix the notebook ignoring cell executions while a kernel is starting by queueing the messages.

• Fix handling of url prefixes (e.g. JupyterHub) in terminal and edit pages.

• Support nested SVGs in output.

And various other fixes and improvements.

16.4 4.1.0

Bug fixes:

• Properly reap zombie subprocesses

• Fix cross-origin problems

• Fix double-escaping of the base URL prefix

• Handle invalid unicode filenames more gracefully

• Fix ANSI color-processing

• Send keepalive messages for web terminals

• Fix bugs in the notebook tour

UI changes:

• Moved the cell toolbar selector into the View menu. Added a button that triggers a “hint” animation to the main
toolbar so users can find the new location. (Click here to see a screencast)

104 Chapter 16. Jupyter notebook changelog

https://cloud.githubusercontent.com/assets/335567/10711889/59665a5a-7a3e-11e5-970f-86b89592880c.gif

Jupyter Notebook Documentation, Release 5.0.0.dev

• Added Restart & Run All to the Kernel menu. Users can also bind it to a keyboard shortcut on action
restart-kernel-and-run-all-cells.

• Added multiple-cell selection. Users press Shift-Up/Down or Shift-K/J to extend selection in command
mode. Various actions such as cut/copy/paste, execute, and cell type conversions apply to all selected cells.

• Added a command palette for executing Jupyter actions by name. Users press Cmd/Ctrl-Shift-P or click
the new command palette icon on the toolbar.

• Added a Find and Replace dialog to the Edit menu. Users can also press F in command mode to show the
dialog.

16.4. 4.1.0 105

Jupyter Notebook Documentation, Release 5.0.0.dev

Other improvements:

• Custom KernelManager methods can be Tornado coroutines, allowing async operations.

• Make clearing output optional when rewriting input with set_next_input(replace=True).

• Added support for TLS client authentication via --NotebookApp.client-ca.

• Added tags to jupyter/notebook releases on DockerHub. latest continues to track the master branch.

See the 4.1 milestone on GitHub for a complete list of issues and pull requests handled.

16.5 4.0.x

16.5.1 4.0.6

• fix installation of mathjax support files

• fix some double-escape regressions in 4.0.5

• fix a couple of cases where errors could prevent opening a notebook

16.5.2 4.0.5

Security fixes for maliciously crafted files.

• CVE-2015-6938: malicious filenames

106 Chapter 16. Jupyter notebook changelog

https://github.com/jupyter/notebook/issues?page=3&q=milestone%3A4.1+is%3Aclosed+is%3Aissue&utf8=%E2%9C%93
https://github.com/jupyter/notebook/pulls?q=milestone%3A4.1+is%3Aclosed+is%3Apr
http://www.openwall.com/lists/oss-security/2015/09/02/3

Jupyter Notebook Documentation, Release 5.0.0.dev

• CVE-2015-7337: malicious binary files in text editor.

Thanks to Jonathan Kamens at Quantopian and Juan Broullón for the reports.

16.5.3 4.0.4

• Fix inclusion of mathjax-safe extension

16.5.4 4.0.2

• Fix launching the notebook on Windows

• Fix the path searched for frontend config

16.5.5 4.0.0

First release of the notebook as a standalone package.

16.5. 4.0.x 107

http://www.openwall.com/lists/oss-security/2015/09/16/3

	The Jupyter Notebook
	UI Components
	Configuration Overview
	Config file and command line options
	Running a notebook server
	Security in Jupyter notebooks
	Configuring the notebook frontend
	Distributing Jupyter Extensions as Python Packages
	Extending the Notebook
	Contributing to the Jupyter Notebook
	Making a Notebook release
	Developer FAQ
	Examples
	My Notebook
	Other notebook
	Jupyter notebook changelog

